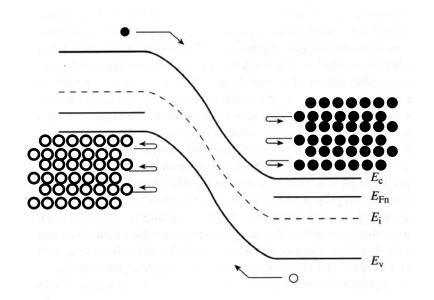
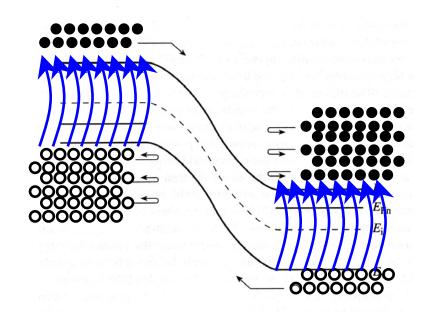
Lecture 16

P-N Junction Diodes: Part 6

Photodiodes, Solar Cells (Photovoltaic devices), and Multiple Diode Analysis

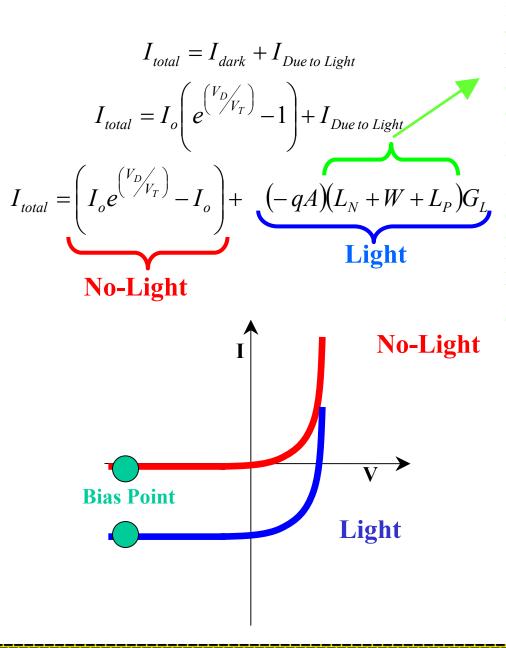

Reading:

Pierret 9.2 and Notes

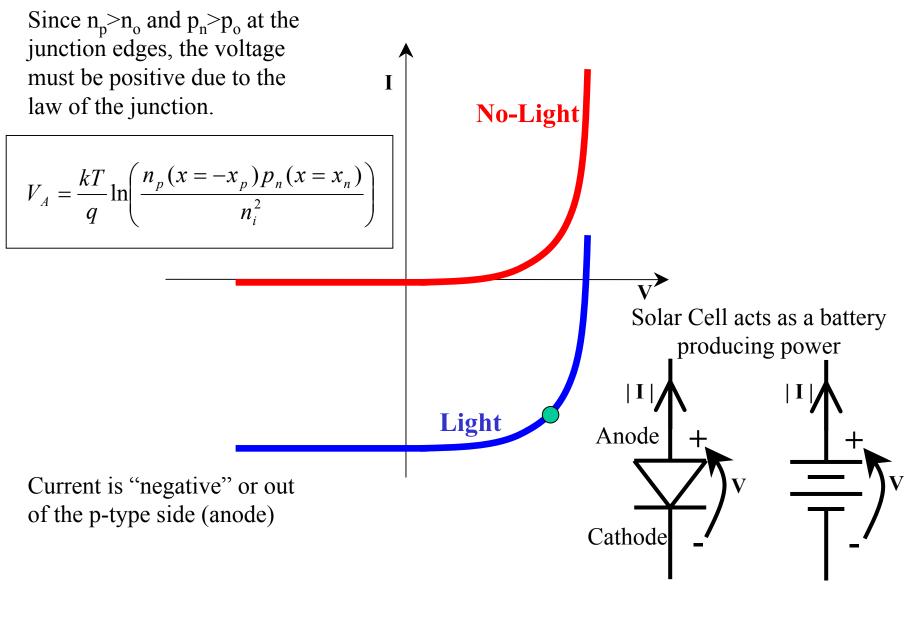

Georgia Tech

ECE 3040 - Dr. Alan Doolittle

Photodiode



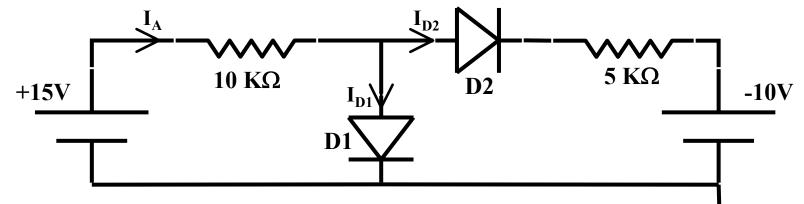
Reversed Bias Diode with no light illumination


Reversed Bias Diode WITH light illumination results in "extra" drift current due to photogenerated ehp's that can reach the junction.

Photodiode

Every EHP created within the depletion region (W) and within a diffusion length away from the depletion region is collected (sweeped across the junction by the electric field) as photcurrent (current resulting from light). All other **EHP's recombine** before they can be collected.

Solar Cell = Unbiased Photodiode



Georgia Tech

ECE 3040 - Dr. Alan Doolittle

Multiple Diode Analysis

Consider the 2- diode circuit below:

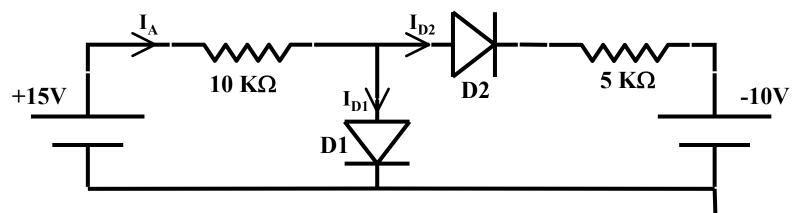
Possible states for the 2 diodes:

<u>D1</u>	<u>D2</u>
Off	Off
Off	On
On	Off
On	On

Solution:

Make a guess as to one of the possible states of the circuit.

If a diode is assumed on, verify the current calculated flows in the correct direction consistent with the diode being on


If a diode is assumed off, verify the voltage across the diode calculated has a polarity consistent with the diode being off

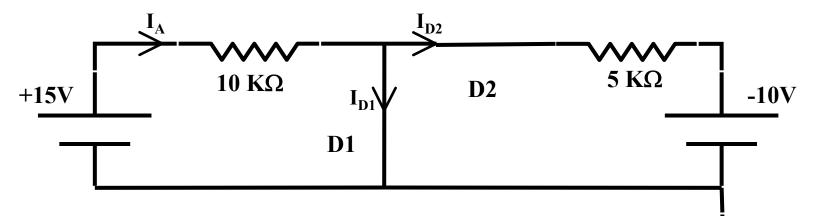
Only one solution exists for a given model (ideal or CVD)

Georgia Tech

ECE 3040 - Dr. Alan Doolittle

- •We'll select the ideal diode model.
- •Let's first assume both diodes are on, then:

$$I_{A} = \left(\frac{(15-0)V}{10k\Omega}\right) = 1.5 \ mA$$
$$I_{D2} = \left(\frac{(0-(-10))V}{5k\Omega}\right) = 2.0 \ mA$$
but...

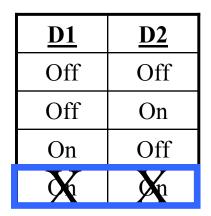

$$I_A = I_{D1} + I_{D2} \Longrightarrow I_{D1} = -0.5 \ mA$$

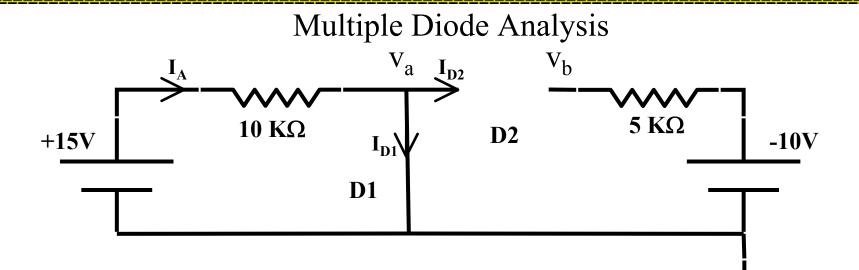
•This contradicts the assumption that D1 is on!

Possible states for the 2 diodes:

<u>D1</u>	<u>D2</u>
Off	Off
Off	On
On	Off
On	On

Multiple Diode Analysis

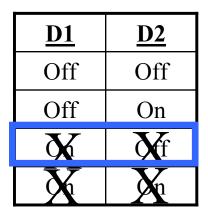

- •We'll select the ideal diode model.
- •Let's first assume both diodes are on, then:


$$I_{A} = \left(\frac{(15-0)V}{10k\Omega}\right) = 1.5 \ mA$$
$$I_{D2} = \left(\frac{(0-(-10))V}{5k\Omega}\right) = 2.0 \ mA$$
but.

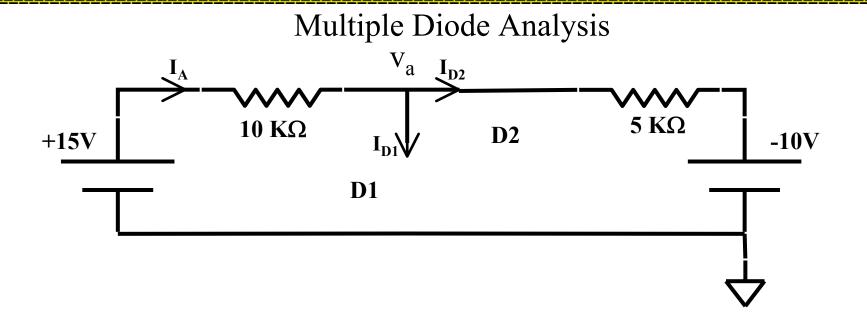
$$I_A = I_{D1} + I_{D2} \Longrightarrow I_{D1} = -0.5 \ mA$$

•This contradicts the assumption that D1 is on!

Possible states for the 2 diodes:



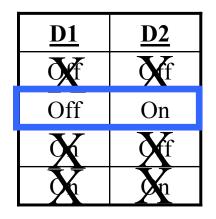
•Let's first assume diode 1 is on, diode 2 is off:


$$I_{A} = \left(\frac{(15 - v_{a})V}{10k\Omega}\right) = \left(\frac{(15 - 0)V}{10k\Omega}\right) = 1.5 \ mA$$
$$I_{D2} = 0 \ mA$$
$$v_{b} = -10v$$
$$V_{Diode1} = v_{a} - v_{b} = 0 - (-10)V = 10V$$

Possible states for the 2 diodes:

•This contradicts the assumption that D2 is off!

ECE 3040 - Dr. Alan Doolittle



Let's now assume D1 is off and D2 is on:

 $I_{A} = I_{D2}$ $15V - 10,000I_{A} - 10,000I_{A} - (-10V) = 0$ $I_{A} = 1.7 mA$ $v_{a} - 0 = V_{Diode1} = 15 - 10,000I_{A} = -1.7V$

Assumptions: D1 off and D2 on verified!

Possible states for the 2 diodes:

It is left as an exercise to disprove the last combination.

ECE 3040 - Dr. Alan Doolittle

SPICE Computer simulations of Circuits

- •SPICE = "Simulation Program with Integrated Circuit Emphasis"
- •A general purpose program that simulates electronic circuits.
- •*PSPICE* = PC version of SPICE (from MicroSim Corporation which was recently purchased by Cadence Corporation)

•References:

•Program (Version 9) is available in a limited use (small number of components) from

http://www.orcad.com/Product/Simulation/PSpice/eval.asp

•Also available (Version 8) with detailed reference and instructions in the required text for ECE3041: "Schematic Capture Using MicroSim Pspice for Windows 95/98/NT" by Herniter. This is the version I will use in class.

Other good "older" references useful for "device model" descriptions are:

- [1] P. Tuinenga, A Guide to Circuit Simulation and Analysis Using PSpice, 2nd Ed., Englewood, NJ: Prentice Hall, 1992.
- [2] S. Reidel and J. Nilsson, Introduction to PSpice, Menlo Park, CA: Addison Wesley, 1997.
- [3] M. Rashid, SPICE for Circuits and Electronics Using PSpice, Englewood, NJ: Prentice Hall, 1995.

SPICE Computer simulations of Circuits

Types of analysis supported by SPICE:

- •Quiescent operating point determination (.OP)
- •DC sweeps of current/ voltage sources (.DC)
- •Time-domain (transient) response (.TRAN)
- •Small-signal frequency response (.AC)
- •Fourier analysis (.FOUR)
- •Noise analysis (.NOISE)
- •Sensitivity analysis (.SENS)
- •Thevenin equivalents (.TF)
- •Others

SPICE Computer simulations of Circuits

List of most Common SPICE diode model parameters:

Parameter	Symbol	SPICE Name	Units	Default
Saturation current	I ₀ or I _S	IS	Α	10e-14
Emission coefficient	n or η	Ν	-	1
Series resistance	R _s	RS	Ω	0
Built- in voltage	V_{bi} or ϕ_j	VJ	V	1
Junction Capacitance	C _{j0}	C _{J0}	F	0
Grading coefficient	m	Μ	-	0.5
Transit time	τ_t	ТТ	S	0
Breakdown voltage	V _{BD}	BV	\mathbf{V}	8
Reverse current at breakdown	I _{BD}	IBV	Α	10e-10

ECE 3040 - Dr. Alan Doolittle

SPICE Computer simulations of Circuits: In class example

Steps to Perform in SPICE	Comment	
File-new		
Draw-Get New Part-Dbreak-Place & Close	"Breakout" parts are meant to have the user modify there parameters	
Escape	Returns cursor	
Repeat above steps for a resistor (R), DC source	In SPICE, a ground reference is <u>ALWAYS</u> required.	
(VDC) and Ground reference (Gnd_Analog)		
Connect components with wires		
Edit-model-Edit Instance Model	Change diode model parameters such as IS, BV, etc and change name and library	
Change model name, save to a library	for which the part is stored in for future use.	
Analysis-Display results on schematic-Enable	Change settings to display bias voltages on schematic	
Voltage		
Simulate	Quiescent Bias point is calculated and displayed	
Marker-Mark Current into Pin	Used to measure current into diode	
Analysis-Setup-DC sweep-Name V1, Start –15V,	Will enable a sweep of the chosen source, V1	
End 2V, Increment 0.1V		
Simulate	A new program, called "Probe" will display the results	
Delete VDC (V1)		
Draw-Get New Part-VSIN-Place & Close	We will do a different type of analysis, letting the source vary sinusoidally with time.	
DC=-5V, VAMPL=10V, VOFF=0, FREQ=60	60 Hz, 20 V peak-peak sine wave centered around zero, that has a value of -5V for the	
	DC operating point determination.	
Analysis-Display results on schematic-Disable		
Voltage		
Analysis-Setup-Uncheck DC Sweep-Add transient	Limit step size to 0.01 mS, which is small enough to result in smooth curvatures in	
with Print Step=0.1 mS, Final Time=60 mS, Step	signals, stop analyzing after a couple of cycles (60 mS), and print results to the output	
Ceiling=0.01 mS	file (*.out) in larger 0.1mS steps.	
Simulate		
Trace-Add-V(R1:1)-V(R1:2)	Add voltage across the diode	
Plot-Add-Y-axis-Trace-Add-I(D1)	Add a different y-axis so 2 variables of grossly different magnitude can be compared.	