Lecture 2

Unit Cells and Miller Indexes

Reading:

(Cont'd) Pierret 1.1, 1.2, 1.4, 2.1-2.6

Unit Cell Concept

The crystal lattice consists of a periodic array of atoms.

Unit Cell Concept

Unit Cell Concept

Unit Cell Concept

Unit Cell Concept

A"building block" that can be periodically duplicated to result in the
 crystal lattice is known as the "unit cell".

Unit Cell Concept

The crystal lattice consists of a periodic array of atoms.

A"building block" that can be periodically duplicated to result in the crystal lattice is known as the "unit cell".

The smallest "building block" that can be periodically duplicated to result in the crystal lattice is known as the "primative unit cell".
(b)

(d)

Figure 1.2 Introduction to the unit cell method of describing atomic arrangements within crystals.
(a) Sample two-dimensional lattice. (b) Unit cell corresponding to the part (a) lattice. (c) Reproduction of the original lattice. (d) An alternative unit cell.

Unit Cell Concept

Lattice Constant: A length that describes the unit cell. It is normally given in \AA, angstroms $=1 \mathrm{e}-10$ meters .

Diamond Structure: Constructed by 2 "inter-penetrating" FCC Lattices

DIAMOND
(C, Ge, si, etc)

BODY-CENTERED CUBIC ($\mathrm{Na}, \mathrm{W}, \mathrm{etc}$)

ZINCBLENDE
(GaAs, GaP, etc)

Fig. 1 Some important unit cells (direct lattices) and their representative elements or compounds; a is the lattice constant.

Unit Cell Concept

Some unit cells have hexagonal symmetry.

(a)

Rocksalt unit cells are one of the simplest practical unit cells.

(b)

Fig. 2 Two unit cells of compound semiconductors. (a) Wurtzite lattice (CdS, ZnS , etc.). (b) Rock-salt lattice ($\mathrm{PbS}, \mathrm{PbTe}$, etc.).

Atomic Density

What is the atomic density of a BCC material with lattice constant 5.2 angstroms?

Volume of unit cell $=a^{3}=(5.2 e-8 \mathrm{~cm})^{3}=1.41 e-22 \mathrm{~cm}^{3}$
Density $=\frac{\text { Number of Atoms per unit cell }}{\text { Volume of unit cell }}=1.4 e 22 \frac{\text { atoms }}{\mathrm{cm}^{3}}$

Crystalline Planes and Miller Indices

Multiply by a number (12 in this example) to give smallest whole number set $=3,-4,6$

Place any minus signs over their index and place set in parenthesis $=(346)$

Crystalline Planes and Miller Indices: Planes and directions

Figure 1.7 Visualization and Miller indices of commonly encountered (a) crystalline planes and (b) direction vectors.

Crystalline Planes and Miller Indices:

Equivalent Planes and directions

