Lecture 9

Photogeneration, Absorption, and Nonequilibrium

Reading:

(Cont'd) Notes and Anderson² sections 3.4-3.11

Georgia Tech

Photogeneration

Light with photon energy, $h\nu < Eg$ is not easily absorbed. A convenient expression for the energy of light is $E=1.24/\lambda$ where λ is the wavelength of the light in um.

Light with energy, hv > Eg is absorbed with the "unabsorbed" light intensity as a function of depth into the semiconductor is $I(x) = I_o e^{-\alpha x}$

where Io is the initial light intensity, x is distance and α is the absorption coefficient [1/cm].

Photogeneration

Each Photon with energy greater than Eg can result in one electron hole pair. Thus, we can say,

$$\frac{\partial n}{\partial t}\Big|_{Light} = \frac{\partial p}{\partial t}\Big|_{Light} = G_L(x,\lambda) \quad where \ G_L(x,\lambda) = G_{LO}e^{-\alpha x} \quad \#(cm^3 - Sec)$$

If α is small (near bandgap light), the generation profile can be approximately constant.

If α is large (light with energy>> bandgap), the generation profile can be approximated as at the surface.

Important Nomenclature

 n_0, p_0 ... carrier concentrations in the material under analysis when equilibrium anditions provail

rium conditions prevail.

n, p ... carrier concentrations in the material under arbitrary conditions.

 $\Delta n \equiv n - n_0 \dots$ deviations in the carrier concentrations from their equilibrium values.

 $\Delta p \equiv p - p_0$ Δn and Δp can be both positive and negative, where a positive devia-

tion corresponds to a carrier excess and a negative deviation corre-

sponds to a carrier deficit.

 $N_{\rm T}$... number of R-G centers/em³.

 $n = \Delta n + n_o$ and $p = \Delta p + p_o$

In Non-equilibrium, np does not equal n_i²

Low Level Injection

 $\Delta p = \Delta n \ll n_o$ and $n \sim n_o$ in n-type material

 $\Delta p = \Delta n \ll p_0$ and $p \sim p_0$ in p-type material

Carrier Concentrations after a "Perturbation"

After the carrier concentrations are perturbed by some stimulus (leftmost case) and the stimulus is removed (center case) the material relaxes back toward it's equilibrium carrier concentrations.

Consider a case when the hole concentration in an n-type sample is not in equilibrium, i.e., pn does NOT equal n_i^2

$$\frac{\partial p}{\partial t}\Big|_{thermal \ R-G} = -\frac{\Delta p}{\tau_p} \qquad where \quad \tau_p = \frac{1}{c_p N_T}$$

where τ_p is the min ority carrier lifetime

 c_p is a proportionality cons tan t

 N_T is the "trap" concentration

- •The minority carrier lifetime is the average time a minority carrier can survive in a large ensemble of majority carriers.
- •If Δp is negative \rightarrow Generation or an increase in carriers with time.
- •If Δp is positive \rightarrow Recombination or a decrease in carriers with time.
- •Either way the system "tries to reach equilibrium"
- •The rate of relaxation depends on how far away from equilibrium we are.

Likewise when the electron concentration in an p-type sample is not in equilibrium, i.e., pn does NOT equal n_i^2

$$\frac{\partial n}{\partial t}\Big|_{thermal \ R-G} = -\frac{\Delta n}{\tau_n}$$
 where $\tau_n = \frac{1}{c_n N_T}$

where τ_n is the min ority carrier lifetime

 c_n is a different proportionality cons tan t

 N_T is the "trap" concentration

More generally for any doping case:

$$\frac{\partial n}{\partial t}\Big|_{thermal}\Big|_{R-G} = \frac{\partial p}{\partial t}\Big|_{thermal}\Big|_{R-G} = \frac{n_i^2 - np}{\tau_p(n+n_1) + \tau_n(p+p_1)}$$
 Same unit as above

where...

$$n_1 \equiv n_i e^{(E_T - E_i)/kT}$$
 and $p_1 \equiv n_i e^{(E_i - E_T)/kT}$

Example: After a long time on, a light is switched off

$$\frac{\partial n}{\partial t} = -\frac{\Delta n}{\tau_n} \qquad has \ a \ solution$$

$$n(t) = n_o + \Delta n_o e^{-\binom{t}{\tau_n}} \quad where \ \Delta n_o = initial \ excess \ electron \ concentration$$

Georgia Tech

ECE 3080 - Dr. Alan Doolittle

Carrier Relaxation can also be achieved through Direct recombination

Given: $\Delta n = \Delta p$, $n = n_o + \Delta n$, $p = p_o + \Delta p$

Low Level Injection ==> $\Delta n \ll N_a$ and High Level Injection ==> $\Delta n \gg N_a$

- •Recombination Rate, $R = Bnp [\#/cm^3 sec.]$
- (depends on number of electrons and holes present)

• In Thermal Equilibrium,

 $np = n_i^2$ where n_i^2 is the n-p product due to thermal generation (intrinsic generation)

Recombination rate, $R = B n_i^2 = G$, Generation Rate where B is a constant

Under Illumination (Non-thermal equilibrium), np © n_i²

Net Recombination Rate,
$$-dn/dt = R - G = B(np - n_i^2)$$

but,

$$\Delta n = \Delta p$$

$$\begin{aligned} -dn/dt &= B(np - n_i^2) \\ &= B((n_o + \Delta n)(p_o + \Delta p) - n_i^2) \\ &= B(n_o p_o - n_i^2 + \Delta p n_o + \Delta n p_o + \Delta n \Delta p) \\ &= B\Delta n(0 + n_o + p_o + \Delta n) \\ &= B\Delta n(n_o + p_o + \Delta n) \end{aligned}$$

Thus, using our lifetime definition,

$$-dn/dt = -\Delta n/\tau_e$$

$$\tau_e = 1/(B(n_o + p_o + \Delta n))$$

Georgia Tech

Carrier Relaxation can also be achieved through Direct recombination Special cases:

Low Level Injection: Δn<<majority carrier density

$$\tau_e = 1/(B(n_o + p_o))$$

and if the material is n-type:

$$\tau_e = 1/(Bn_o^{})$$

or p-type:

 $\tau_e=1/(Bp_o)$

High level injection: $\Delta n \gg$ majority carrier density

 $\tau_e = 1/(B\Delta n)$

Electron Capture and Emission

How many electrons are available for capture

Number of empty defect sites

 $c_e = v_{th,e} \sigma_n n' N_t (1-f(E))$

Ev —————

Electron Capture

Electron
Capture Rate

Capture cross section: Effective size of the defect. Units of area

Thermal velocity: How fast the electrons

are moving

Number of filled defect sites

 $e_e = e_n N_t f(E)$ where $e_n = v_{th,e} \sigma_n N_c e^{-(Ec-Et)/KT}$

Ev — Electron Emission

Electron Emission Rate

Hole Capture and Emission

Ec

Et Ev How many holes are available for capture

Number of filled defect sites

 $c_{p} = v_{th,p} \, \sigma_{p} \, P \, N_{t} \, f(E)$

Capture cross section: Effective size of the defect. Units of area

Thermal velocity: How fast the holes are

Hole Capture

Hole Capture

Ec

moving Rate

Et

Number of empty defect sites

$$e_{p} = e_{h} N_{t} (1 - f(E))$$

$$\text{where } e_{h} = v_{th,p} \sigma_{p} N_{v} e^{-(Et-Ev)/KT}$$

Hole Emission Rate

Electron and Hole Capture and Emission

Recombination:

electron capture / hole capture

hole capture / electron capture

Generation:

hole emission / electron emission

electron emission / hole emission

Recycling of carriers into bands:

hole capture / hole emission

electron capture / electron emission

Carrier Concentrations after a "Perturbation"

$$\frac{\partial p}{\partial t}\big|_{\text{Re combination}} = -c_p N_T p$$
 and $\frac{\partial p}{\partial t}\big|_{\text{Generation}} = c_p N_T p_o$

Plenty of Electrons E_c Dal

R-G Center Concentration N_T Filled with Electrons E_T

Very few Holes E_v

Electron and Hole Capture and Emission

In steady state non-equilibrium, the number of electrons and holes are constant:

$$G - (c_e - e_e) = dn/dt = 0$$

$$G - (c_p - e_p) = dp/dt = 0$$

®The net recombination/generation rate is,

This equation can be used to solve for f'(E), the non-equilibrium fermi distribution function (which does NOT equal f(E), then calculated as,