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ECE 4813 Dr. Alan Doolittle 

Contact Resistance 
 Metal-semiconductor Contacts 

Specific Contact Resistance 
Transfer Length 
Contact String 

Transfer Length Method 
Four-terminal Method 
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Metal – Semiconductor Contacts 

χφφ −= MB

 Every semiconductor device has contacts 
 Contact resistance is a parasitic resistance 
 Contacts are almost always metal-semiconductor contacts 
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Metal – Semiconductor Contacts 
 Energetic barriers are most often described by the 

“Electron Affinity Model” (EAM). 
 EAM is a purely theoretical model and REAL CONTACTS 

RARELY FOLLW THIS MODEL. 
 Nevertheless, EAM explains several aspects (depletion 

widths, capacitance, general IV shape, etc…) of ohmic and 
Schottky barrier diodes sufficiently that it is widely used. 

 Reasons for the barrier height not agreeing with theory: 
 Image force lowering (lower than expected barrier) 
 Fermi-level pinning 
 Interface state filling (i.e. partially pinned or voltage 

dependent interface state occupation). 
 Lack of complete model understanding.  Can you 

improve on the existing model? 
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Carrier Motion 
 In an ohmic contact, electrons must flow from metal to 

semiconductor or from semiconductor to metal 

 Current is controlled by barrier width rather than barrier 
height 
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Energy band diagrams for ideal MS 
contacts 

ΦM > ΦS ΦM < ΦS 

An instant after 
contact formation 

Under equilibrium 
conditions 

Schottky Ohmic 



ECE 4813 Dr. Alan Doolittle 

MS (n-type) contact with ΦM > ΦS 

 After the contact formation, electrons will begin to flow from 
the semiconductor to the metal. 

 The removal of electrons from the n-type material leaves 
behind uncompensated Nd

+ donors, creating a surface 
depletion layer, and hence a built-in electric field (similar to 
p+-n junction). 

 Under equilibrium, the Fermi-level will be constant and no 
energy transfer (current) flows 

 A barrier ΦB forms blocking electron flow from M to S.  
 Based on the Electron Affinity Model (EAM), the simplest of 

models used to describe MS junctions, ΦB = ΦM – χ    ...   
ideal MS (n-type) contact.  ΦB is called the “barrier height”. 

 Electrons in a semiconductor will encounter an energy 
barrier equal to ΦM – ΦS while flowing from S to M. 
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Since MS Schottky diode is a majority carrier device (i.e only majority carriers are 
injected from semiconductor to the metal) and thus has no minority carrier storage, the 
frequency response of the device is much higher than that of equivalent p+ n diode. 
 
The “turn on voltage” of a Schottky diode is typically smaller than a comparable p-n 
junction since the barrier to forward current flow (Φm-Φs) is typically small.  This “turn 
on” voltage can be as small as 0.3 Volts in some Si Schottky diodes. 
 
This makes a Schottky diode the best choice for power switch protection in inductive 
load applications (motors, solenoids, coils, etc…) and in high frequency rectification but 
not a good choice when low leakage or high breakdown voltage is required. 

I-V Characteristics 
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I-V Characteristics 

Leakage in a Schottky diode is dominated by: 
1) “Thermionic Emission” (metal electrons emitted over the barrier – not likely) 
2) “Thermionic Field Emission” (metal electrons of higher energy tunneling through 

the barrier – more likely) 
3) “Direct tunneling” (metal electrons tunneling through the barrier – most likely in 

higher doped semiconductors or very high electric fields).   
 
Since generation does not require the entire bandgap energy to be surmounted, the 

reverse leakage current for a Schottky diode is generally much larger than that for a 
p+n diode.  Likewise, breakdown (for the same reason) is generally at smaller 
voltages. 
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MS (n-type) contact with 
ΦM > ΦS 

A forward bias will reduce the barrier 
height unbalancing the electron current 
flow, resulting in a huge forward current 
that increases exponentially with applied 
voltage 
 
A reverse bias will increase the barrier 
height resulting in a small “reverse 
current” flow that will be dominated by 
tunneling currents for high doped 
semiconductors and/or thermally assisted 
field emission for moderate/low doped 
semiconductors. 
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Ohmic Contacts: MS (n-type) contact 
with Φ M < ΦS 

 There is no barrier for electron flow from 
the semiconductor to the metal. So, even a 
small VA > 0 results in large current. 

 The small barrier that exists for electron 
flow from metal to the semiconductor, but 
vanishes when VA< 0 is applied to the 
metal. Large current flows when VA< 0. 

 The MS (n-type) contact when ΦM < ΦS 
behaves like an ohmic contact. 

 Lack of depletion (accumulation occurs) 
means (essentially) no rectification. 

VA 

I Greatly Exaggerated cross over. 
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Generalization of Metal Semiconductor 
Contact Energy Relationships 

 n-type p-type 

ΦM > ΦS rectifying ohmic 

ΦM < ΦS ohmic rectifying 
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Carrier Motion 
 n-type and p-type substrates are analogs of one 

another 

n - Substrate p - Substrate
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Specific Contact Resistivity 
 The specific contact resistivity, ρc, is an area-independent 

parameter 

 Thermionic emission 

 For φB = 0.6 V, A* = 110 A/cm2K2, T = 300 K  
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Specific Contact Resistivity 
 Thermionic emission 

 Thermionic-field emission 

 Field emission 
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Specific Contact Resistivity 
 ρc is very sensitive to doping density 

10-8

10-7

10-6

10-5

10-4

10-3

1016 1017 1018 1019 1020 1021

ρ c
 (o

hm
-c

m
2 )

ND (cm-3)

n-Si
10-8

10-7

10-6

10-5

10-4

10-3

1016 1017 1018 1019 1020 1021
ρ c

 (o
hm

-c
m

2 )

NA (cm-3)

p-Si



ECE 4813 Dr. Alan Doolittle 

Contact Resistance 
 Contacts are characterized by: 

Contact resistance, Rc (Ω) 
Specific contact resistivity, ρc (Ω -cm2) 
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Contact - Current Crowding 
 Current flowing into/out of a contact can crowd into a 

portion of the contact 
 Current has the choice to flow through ρc or Rsh 
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Contact - Current Crowding 
 LT: transfer length 
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Contact String (Chain) 
 2N series-

connected 
contacts are 
measured             
(N ≈ 100-1000 or 
more) 

 Does not allow 
separation of Rm,   
Rs, and Rc 

 Suitable for 
process control, 
but not for 
detailed contact 
characterization 

 Must know Rs from 
independent 
measure of sheet 
resistance in order 
to extract RC 
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Contact String (Chain) 
 Contact string consists of pn junctions 
 The junctions are reverse biased 
 When the junction voltage exceeds VBD, it breaks down 
 Can have the case where poor contacts, i.e., high Rc, cannot be 

detected because junctions break down 
 Measurement depends on substrate grounded or not 

 

Rm 

Rs Rc 

Grounded? 

I V 
V1 V2 

n p I 
V 



ECE 4813 Dr. Alan Doolittle 

Transfer Length Method (TLM) 
 Consists of identical contacts with varying spacings d 
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Four Terminal (Kelvin) Method 
 Determines the contact resistance 

independent of the sheet 
resistance 
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Heed warnings on accuracy (too complex to discuss in class) summarized in our text on pages 150-156. 
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Via Contact Resistance 
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Review Questions 
 What is the most important parameter to give 

low contact resistance? 
 What are the three metal-semiconductor 

conduction mechanisms? 
 What is Fermi level pinning? 
 Does the contact chain give detailed contact 

characterization? Why or why not? 
 What is the transfer length method? 
 Why is the Kelvin contact test structure best for 

contact resistance measurements? 
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