

ECE 4813

Semiconductor Device and Material Characterization

Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology

As with all of these lecture slides, I am indebted to Dr. Dieter Schroder from Arizona State University for his generous contributions and freely given resources. Most of (>80%) the figures/slides in this lecture came from Dieter. Some of these figures are copyrighted and can be found within the class text, *Semiconductor Device and Materials Characterization*. <u>Every serious</u> *microelectronics student should have a copy of this book!*

Charge-Based Measurements Probe Characterization

Scanning Tunneling Microscopy Atomic Force Microscopy

Charge-Based Measurements

- Traditional
 - Current voltage
 - Capacitance voltage
 - Current, voltage, capacitance time
 - Usually need test structure with contacts
- New
 - Deposit charge
 - Measure surface voltage, surface photovoltage
 - Use charge, light
 - Usually contactless

Charge-Based Measurements

- Charge is deposited on the wafer *chemically* or by *corona charge*
- Contactless surface voltage/surface photovoltage is measured
- Measurement can be augmented with *light*

Advanced Semiconductor Technology Facility

Surface Charging

Chemical Rinse

Blanket Corona Charging (Wire)

Localized Corona Charging (Point source with/without mask)

First Xerographic Image Oct. 22, 1938

Chester Carlson experimented with creation of electrostatic images on surfaces of photoconducting insulators

Xerography

- Vibrating probe: probe is moved mechanically leading to current flow; current is calibrated or voltage V_B is applied until current is zero
- Stationary probe: probe is stationary, pulsed light produces time-varying voltage

Kelvin Probe

- Probe vibrates vertically or horizontally
- Piezo drive, ~ 100 1000 Hz
- 1 60 μm displacement
- Voltage or current is measured

Lord Kelvin, Philos. Mag. 46, 82 (1898)

Lord Kelvin (William Thomson)

- (a): Open circuit, spacing d = d_1 , Q = 0, ε = 0
- (b): Short circuit, $d = d_1$, $Q = Q_1$, V = 0, $\varepsilon = \varepsilon_1$
- (c): Short circuit, $d = d_2 > d_1$, $Q = Q_2 < Q_1$, V = 0, $\varepsilon = \varepsilon_2 < \varepsilon_1$

No applied voltage, current flows as plate vibrates

$$I = \frac{dQ}{dt} = V\frac{dC}{dt} = -V\frac{\varepsilon_o}{d^2}\frac{d(d)}{dt}$$

Oxide Thickness

- Measure the surface voltage as a function of corona charge Q
- In inversion/accumulation
 *φ*_s ≈ constant
- Slope gives oxide thickness
 - No poly-Si gate depletion
 - Not affected by probe punchthrough
 - Relatively insensitive to oxide pinhole leakage currents

Advanced Semiconductor Technology Facility

Errors Associated with Voltage Versus Charge Measurements

- The oxide charge is related to the oxide voltage through the relationship Q_{ox} = C_{ox}V_{ox}
- A voltage uncertainty ΔV_{ox} leads to a charge uncertainty of

$$\Delta \boldsymbol{Q}_{ox} = \frac{\boldsymbol{K}_{ox}\boldsymbol{\varepsilon}_{o}\boldsymbol{\Delta}\boldsymbol{V}_{ox}}{\boldsymbol{t}_{ox}}$$

- Voltage-based measurements
 - Large uncertainty in oxide charge
 - Uncertainty is dependent on oxide thickness
- Charge-based measurements
 - Less uncertainty in oxide charge (∆Q_{ox} ≈ 10⁹ cm⁻²)

 Uncertainty independent of oxide thickness

$$\Delta \boldsymbol{Q}_{ox} = \Delta \boldsymbol{Q}_{ox}$$

Gate Oxide Integrity

- Deposit charge on an oxidized wafer
- Some charge leaks through the oxide
- Measure surface voltage as a function of time

$$I_{leak} = C_{ox} \frac{dV}{dt} \Rightarrow V(t) = \frac{I_{leak}}{C_{ox}} t$$

- When the charge density is too high, the charge tunnels through the oxide
- SiO₂ breaks down at electric fields of 10-14 MV/cm and E_{ox} saturates

Gate Oxide Integrity

- 3.8 nm production oxide, localized GOI degradation detected
- Source: Cu contamination
- Missed by TXRF (measured only in 5 spots)

Courtesy of S. Weinzierl, KLA-Tencor.

- Probe microscopy was invented in 1980 By Binnig and Rohrer at IBM Labs. in Zürich, Switzerland
- They devised a clever way of bringing a sharp metal tip very close (within 1-2 nm) to a conducting sample, applied a voltage and measured the current
- This technique is known a scanning tunneling microscopy
- For this work they were awarded the Nobel prize in 1986

H. Rohrer

Probe Microscopies

AFM	Atomic force microscope
BEEM	Ballistic electron emission microscope
CAFM	Conducting AFM
CFM	Chemical force microscope
FM	Interfacial force microscope
MFM	Magnetic force microscope
MRFM	Magnetic resonance force microscope
MSMS	Micromagnetic scanning microprobe
Nano-Field	Nanometer electric field gradient microscope
Nano-NMR	Nanometer nuclear magnetic resonance microscope
NSOM	Near field scanning optical microscope
SCM	Scanning capacitance microscope
SCPM	Scanning chemical potential microscope
SEcM	Scanning electrochemical microscope
SICM	Scanning ion conductance microscope
SKPM	Scanning Kelvin probe microscope
SThM	Scanning thermal microscope
STOS	Scanning tunneling optical spectrometer
	obaining tainioning option opport oniotor
STM	Scanning tunneling microscope
STM FUNA	Scanning tunneling microscope Tunneling AFM

Advanced Semiconductor Technology Facility

Scanning Tunneling Microscopy (STM)

STM relies on electron tunneling through an air gap

STM Images

STM images can have atomic resolution

Au Lattice

Au Lattice With 1/3 Monolayer Cu

Courtesy of Topometrix

www.almaden.ibm.com/vis/stm/gallery.html

Fe Atoms on Cu Surface "Atom"

Atomic Force Microscopy (AFM)

- A sharp tip is scanned over a surface with feedback
- Piezo-electric scanners maintain the tip at
- Constant force
 - Height information
- Constant height
 - Force information
- Tips are typically made from Si_3N_4 or Si
- The detector measures the difference in light intensities between the upper and lower photodetectors
- Feedback from the photodiode difference signal enables the tip to maintain either a constant force or constant height

http://www.chembio.uoguelph.ca/educmat/chm729/afm/firstpag.htm

AFM

Advanced Semiconductor Technology Facility

Epi Si; rms ~ 0.7 Å

Poly Si; rms ~ 60 Å

AFM images courtesy of W. Chen, Motorola

Atomic Force Microscopy

Contact mode

- Tip scans the sample in close contact with the surface
- The repulsive force on the tip is around 10⁻⁸ N
- This force is set by pushing the sample against the cantilever with a piezoelectric element
- The piezo voltage is proportional to sample height
- Non-contact mode
 - Tip is 5-15 nm above the sample surface. Attractive Van der Waals forces acting between the tip and the sample are detected, and topographic images are constructed by scanning the tip above the surface

Tapping mode

- Cantilever oscillates at its resonant frequency (50-500 kHz)
- The cantilever oscillates with a high amplitude (around 20nm) when the tip is not in contact with the surface
- The oscillating tip is then moved toward the surface until it begins to lightly touch, or tap the surface
- Oscillation amplitude is reduced
- The reduction in oscillation amplitude is used to measure surface features

Advanced Semiconductor Technology Facility

AFM Images

Digital Video Disk

CD Stamper

Atomic Force Microscopy

- Measured line width is probe shape dependent
 - Tip shape obtained from profiling standard samples
 - True profile is obtained from known probe tip shape
- Probe shape, flexing stability
- Piezoelectric scan linearity
- Low throughput

[•]0.45 μm Courtesy of IBM

AFM Images of Mars

- AFM on Mars Phoenix Lander
 - 8 AFM points
 - Can be broken off
 - Height sensed by piezoresistors

The first AFM image taken on Mars of Martian soil; 40×40 -µm, grooves are 300 nm deep and 14 µm apart.

AFM needles

Photonics Spectra, **42**, 68, Dec. 2008 ECE 4813 Dr. Alan Doolittle

Scanning Capacitance Microscopy

 Capacitance is analyzed to yield doping densities

Review Questions

- What advantages do charge-based measurements have over voltage-based measurements?
- How is the charge deposited?
- How is the voltage measured?
- Why are charge-based measurements less sensitive to oxide pinholes than conventional oxide integrity measurements?
- How do Kelvin probes work?
- What is the principle of scanning tunneling microscopy?
- What is the principle of atomic force microscopy?
- What materials can be measured with STM?
- What materials can be measured with AFM?
- Why does the probe shape matter in AFM?
- What is measured with scanning capacitance?