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Introduction

The density of states function describes the number of states that are available
in a system and is essential for determining the carrier concentrations and
energy distributions of carriers within a semiconductor.

In semiconductors, the free motion of carriers is limited to two, one, and zero
spatial dimensions. When applying semiconductor statistics to systems of
these dimensions, the density of states in quantum wells (2D), quantum wires
(1D), and quantum dots (0D) must be known.
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Derivation of Density of States (2D)

We can model a semiconductor as an infinite quantum well (2D) with sides of

length L. Electrons of mass m* are confined in the well.

If we set the PE 1n the well to zero, solving the Schrodinger equation yields

hZ
2 _
e v

Oy v
o’ " oy’ Hhy =0 (Eq. D)

2mkE

h2

where k =
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Derivation of Density of States (2D)

Using separation of variables, the wave function becomes

w(x,y)=y. (v (y) (Eq. 2)

Substituting Eq. 2 into Eq. 1 and dividing through by ¥,¥,
yields
1 o’ 1 o’
v + 4

5 —+k =0 where k= constant
y, ox"  y, 0y

This makes the equation valid for all possible x and y terms only if terms

including . (x) and w, ()  areindividually equal to a constant.
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Derivation of Density of States (2D)

Thus, A .
1 azl// _—k2
y, 0x°
where k2=kx2+ky2
1 0’y 2
v, 0y’ -k 0 ‘
y

The solutions to the wave equation where V(x) = 0 are sine and cosine functions

v = Asin(k _x)+ Bcos(k x)

Since the wave function equals zero at the infinite barriers of the well, only the
sine function 1s valid. Thus, only the following values are possible for the

wave number (k):

for n=+%1,2,3....

ECE 6451 Georgia Institute of Technology



Derivation of Density of States (2D)

Recalling from the density of states 3D derivation... A

k-space volume of single state cube in k-space:

V is the volume of the crystal.
Viingle-state 15 the smallest unit in k-space
and is required to hold a single electron.

2mE

where k = 2
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Derivation of Density of States (2D)

Recalling from the density of states 3D derivation...

k-space volume of single state cube in k-space: Vi, vue = (ZIZJF) = (ﬂij = [ij

k-space volume of sphere in k-space: |, _ 47k

sphere

Number of filled states in a sphere: - sre 2x(lxlxlj
272

sin gle—state 2
ﬂ e 33 A factor of two is added Correction factor for
N = 3 7 | B Ark” L to account for the two redundancy in counting
P XX g T 3.2 possible electron spins identical states +/- n, +/-
— of each solution. n, +/-n,
L
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Derivation of Density of States (2D)

For calculating the density of states for a 2D structure (i.e. quantum well), we

can use a similar approach, the previous equations change to the following:

k-space volume of single state cube in k-space: % (x\#m) () (=
sin gle—state ~ a b o 4 o L2

k-space volume of sphere in k-space: p  — 2

circle

Number of filled states in a sphere:

N: I/circle sz lxl
V 2 2

sin gle—state

7’ 4 27

r
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Derivation of Density of States (2D)

2mE

h2

yields

: 272
continued...... N = kL Substituting & =

The density per unit energy is then obtained using the chain rule:

dN dN dk L’'m
dE dk dE  7h’
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Derivation of Density of States (2D)

The density of states per unit volume, per unit energy 1s found by dividing
by V (volume of the crystal).

g(E),p becomes: L'm
ah’ _ M
g(E)ZDz L2 o 7Z'h2

As stated initially for the electron mass, m— m".

Thus,
%k
m It is significant that the 2D
g (E )2 D~ .5 density of states does not depend
7Th on energy. Immediately, as the

top of the energy-gap is reached,
there is a significant number of
available states.
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Derivation of Density of States (1D)

For calculating the density of states for a 1D structure (i.e. quantum wire), we

can use a similar approach. The previous equations change to the following:

E=constant

\

e

T T T
k-space volume of single state cube in k-space: Vsin gle-state = o =l = |=| =

V L
k-space volume of sphere in k-space: V, =k
N = Viwe 2 % (Lj
Vsin gle — state 2
Number of filled states in a sphere:
No Kk K
T /4

L
ECE 6451 Georgia Institute of Technology



Derivation of Density of States (1D)

- kL L .
Continued..... N — Substltutlng k= 2mE y1€1dS

2

N
{3

L
2
N=V" _ puE L
T hr
Rearranging...... N = (2m E)1/2 L

The density per unit energy is then obtained by using the chain rule:

1 —1/2
AN AN dk o CmE) T 2mL o iy

dE  dk dE hor hr
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Derivation of Density of States (1D)

The density of states per unit volume, per unit energy is found by dividing
by V (volume of the crystal).

g(E),p becomes:

(ZmE)_l/2 -mL o
g(E),) =—F— = @mE) Zem ___m
L

hr hrwA2mE

Simplifying yields...

m_ Nm

hﬂ\/ZmE | \/m

1 m
E _—-‘/—
g(E)ip- hx \2E
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Derivation of Density of States (1D)

As stated initially for the electron mass, m—» m". Also, because only kinetic

energy 1s considered E— Ec.

Thus 1 m*
b E — .
g(E)p P \/Z(E—Ec)
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Derivation of Density of States (0D)

When considering the density of states for a 0D structure (i.e. quantum dot),
no free motion is possible. Because there 1s no k-space to be filled with
electrons and all available states exist only at discrete energies, we describe the
density of states for 0D with the delta function.

Thus,

g(E)yp =20(E-E,)
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Additional Comments

The density of states has a functional dependence on energy.

Degrees of freedom Density of states

Ppost

*'-“'C.E“?—

[

Fig. 12.7. Electronic density

Ppos of states of semiconductors

5 with 3, 2, 1, and 0 degrees

o L7 = const, of freedom for electron

2 : propagation. Systems with

2, 1, and 0 degrees of
freedom are referred to as
quantum wells, quantum
wires, and quanium boxes,
respectively.

Ppos]|
o Epif-j}

= [
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Additional Comments

Degrees of Dispersion Density of states Effective density
freedom (kinetic energy) of states
1> 1 (2 AT 1 (m"kT )2
3ul) E=" (kZ+k24k2)  pRg=—1 ]| #“x..'g—f:c D LfmE ‘
2m ' 2r\ A° V21 mh” )
ﬁz 2 2 D .FH* D .FH*
2 (slab} E= —*(;{'1 +’%—‘£) PpDos = = G(E —Ec] *'?""TC = 5 kT
2m ! Th- i~
B’ m | om m kT
. ) |
I (wire) E=——(k?) PDOS = — NeP =
2m" Tth \| 2(E—-Ec) \| rth2
0 (box) PDOs = 28(E—Ec) NP =2

Table 12.1 Density of states for semiconductor with 3, 2, 1, and 0 degrees of freedom for
propagation of electrons. The dispersion relations are assumed to be parabelic. The formulas can
be applied to anisotropic semiconductors if the effective mass m™ is replaced by the density-of-
states effective mass mpos™. If the semiconductor has a number of M; equivalent minima, the
corresponding density of states must be multiplied by M. The bottom of the band 1s denoted as

Ec and o(E) 1s the step-function.
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Practical Applications

Quantum Wells (2D) - a potential well that confines particles

in one dimension, forcing them to occupy a planar region

Quantum Wire (1D) - an electrically conducting wire, in

which quantum transport effects are important

Quantum Dots (0D) - a semiconductor crystal that confines

electrons, holes, or electron-pairs to zero dimensions.
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Quantum Dots

 Small devices that contain
a tiny droplet of free
electrons.

« Dimensions between
nanometers to a few
microns.

* Contains single electron to
a collection of several
thousands

» Size, shape, and number of
electrons can be precisely
controlled

Core-Shell Coating

Core Quantum Dot

Core-SkeL EviDor
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Quantum Dots

e Exciton: bound electron-

hole pair (EHP)

° AttraCtiVG pOtential The color of the the light emitted by the
between electron and dots is dictated by their size,
hole

* Excitons generated inside
the dot

 Excitons confined to the dot

— Degree of confinement
determined by dot size

— Discrete energies

1.5 nm 2.1 nm
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Fabrication Methods

* Goal: to engineer potential energ A P
) ) ; i i o b
barriers to confine electrons in 3 %% %5 Tt Holes Suanm e

dimensions [.—.—.-‘ ’—U—U—U] I-Q—M

a
3 - L

e 3 primary methods

— Lithography
— Colloidal chemistry
— Epitaxy
o ebiion b O eoowth

FIG. 1 Quantum dot fabrication processes and array of fabricated quantum dots
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Future Research

Probe fundamental physics

Quantum computing schemes

Biological applications

Improved Treatments for Cancer

Optical and optoelectronic devices, quantum
computing, and information storage.
Semiconductors with quantum dots as a material
for cascade lasers.

Semiconductors with quantum dots as a material

for IR photodetectors

Bull's-eye. Red quantum dots injected into
a live mouse mark the location of a tumor.

Injection lasers with quantum dots
Color coded dots for fast DNA testing

3-D 1maging inside living organisms
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