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Introduction

The density of states function describes the number of states that are available 
in a system and is essential for determining the carrier concentrations and 
energy distributions of carriers within a semiconductor. 

In semiconductors, the free motion of carriers is limited to two, one, and zero 
spatial dimensions.  When applying semiconductor statistics to systems of 
these dimensions, the density of states in quantum wells (2D), quantum wires 
(1D), and quantum dots (0D) must be known. 
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Derivation of Density of States (2D)
We can model a semiconductor as an infinite quantum well (2D) with sides of 
length L.  Electrons of mass m* are confined in the well.

If we set the PE in the well to zero, solving the Schrödinger equation yields

(Eq. 1)0
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Derivation of Density of States (2D)

Using separation of variables, the wave function becomes

(Eq. 2)

Substituting Eq. 2  into  Eq. 1 and dividing through by  
yields

where k= constant

This makes the equation valid for all possible x and y terms only if terms 
including are individually equal to a constant.  
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Derivation of Density of States (2D)
Thus, 

where

The solutions to the wave equation where V(x) = 0 are sine and cosine functions

Since the wave function equals zero at the infinite barriers of the well, only the
sine function is valid.  Thus, only the following values are possible for the 
wave number (k): 
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Derivation of Density of States (2D)

Recalling from the density of states 3D derivation…

k-space volume of single state cube in k-space: 

k-space volume of sphere in k-space:  

V is the volume of the crystal.  
Vsingle-state is the smallest unit in k-space
and is required to hold a single electron.
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Derivation of Density of States (2D)

Recalling from the density of states 3D derivation…

k-space volume of single state cube in k-space: 
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k-space volume of sphere in k-space:  
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A factor of two is added 
to account for the two 
possible electron spins 
of each solution.

Correction factor for 
redundancy in counting 
identical states +/- nx, +/-
ny, +/- nz



ECE 6451 Georgia Institute of Technology

Derivation of Density of States (2D)
For calculating the density of states for a 2D structure (i.e. quantum well), we 
can use a similar approach, the previous equations change to the following:

k-space volume of single state cube in k-space: 

k-space volume of sphere in k-space:  
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Derivation of Density of States (2D)

continued……
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The density per unit energy is then obtained using the chain rule: 

Substituting yields
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Derivation of Density of States (2D)
The density of states per unit volume, per unit energy is found by dividing 
by V (volume of the crystal).

g(E)2D becomes:

As stated initially for the electron mass, m      m*.  
Thus, 
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It is significant that the 2D 
density of states does not depend 
on energy. Immediately, as the 
top of the energy-gap is reached, 
there is a significant number of 
available states.
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Derivation of Density of States (1D)
For calculating the density of states for a 1D structure (i.e. quantum wire), we 
can use a similar approach.  The previous equations change to the following:

k-space volume of single state cube in k-space: 

k-space volume of sphere in k-space:  
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Derivation of Density of States (1D)

Continued…..

Rearranging……

2

2
h

mEk =,
π
kLN =

The density per unit energy is then obtained by using the chain rule: 

Substituting yields

ππ h
h LmE

LmE

N 2

2
2

==

( ) ( )
ππ hh

mLmEmLmE

dE
dk

dk
dN

dE
dN ⋅

=
⋅

==
−

−
2/1

2/1

222
2
1

( )
πh
LmEN 2/12=



ECE 6451 Georgia Institute of Technology

Derivation of Density of States (1D)

The density of states per unit volume, per unit energy is found by dividing 
by V (volume of the crystal).

g(E)1D becomes:

Simplifying yields…
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Derivation of Density of States (1D)

As stated initially for the electron mass, m      m*. Also, because only kinetic 

energy is considered E      Ec.

Thus, 
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Derivation of Density of States (0D)

When considering the density of states for a 0D structure (i.e. quantum dot), 
no free motion is possible.  Because there is no k-space to be filled with 
electrons and all available states exist only at discrete energies, we describe the 
density of states for 0D with the delta function.

Thus,

)(2)( 0 cD EEEg −= δ
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Additional Comments
The density of states has a functional dependence on energy. 
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Additional Comments



ECE 6451 Georgia Institute of Technology

Practical Applications
Quantum Wells (2D) - a potential well that confines particles 
in one dimension, forcing them to occupy a planar region 

Quantum Wire (1D) - an electrically conducting wire, in 
which quantum transport effects are important 

Quantum Dots (0D) - a semiconductor crystal that confines 
electrons, holes, or electron-pairs to zero dimensions. 
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Quantum Dots
• Small devices that contain 

a tiny droplet of free 
electrons.

• Dimensions between 
nanometers to a few 
microns.

• Contains single electron to 
a collection of several 
thousands

• Size, shape, and number of 
electrons can be precisely 
controlled
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Quantum Dots
• Exciton: bound electron-

hole pair (EHP)
• Attractive potential 

between electron and 
hole

• Excitons generated inside 
the dot

• Excitons confined to the dot
– Degree of confinement 

determined by dot size
– Discrete energies
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Fabrication Methods
• Goal: to engineer potential energy 

barriers to confine electrons in 3 
dimensions

• 3 primary methods
– Lithography
– Colloidal chemistry
– Epitaxy
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Future Research
• Probe fundamental physics
• Quantum computing schemes
• Biological applications
• Improved Treatments for Cancer 
• Optical and optoelectronic devices, quantum 

computing, and information storage.
• Semiconductors with quantum dots as a material 

for cascade lasers.
• Semiconductors with quantum dots as a material 

for IR photodetectors
• Injection lasers with quantum dots
• Color coded dots for fast DNA testing
• 3-D imaging inside living organisms
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