
Statistical Mechanics and Classical Thermodynamics.

Section 5.5

Lecture Prepared by:

Shruti Prakash



Statistical Mechanics and Classical 
Thermodynamics.

Dates back to 1902 when Gibbs published for the first time his 
discourse of statistical mechanics principle . He approached 
thermodynamics from the idea of particle statistics.

Statistical Mechanics explains the following fundamental ideas 
about particles and their ensembles:

Fundamental configuration of particles:
Particle location and energy states.

Each configuration generates many microstates that are occupied 
by electrons having different spins.
Equilibrium between the configurations: multiplicity of the largest 
configuration.
Thermal equilibrium                  Thermodynamics Principle 



Continued..
Equilibrium is defined as the tendency of a system to return back to its original 
state.
Configurations with the greatest  multiplicity indicates the highest probability of 
a system to exist in that particular state and is defined as *System 
Equilibrium*

From lecture 10, multiplicity g(N,S) is defined as:

The multiplicity function g(N,S) is thus maximized at equilibrium keeping the 
total internal energy of a closed system constant.
Temperature being the measure of internal energy of any system; at 
equilibrium temperature of each subsystem is the same.
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According to classical mechanics, the most 
complete description of a particle’s energy and 
quantum state is given by the Schrödinger 
Equation. 
There have been two constraints laid down for 
particles enclosed in a closed system.

Conservation of energy
Conservation of mass 

Where Ei is the energy of the ith state having Ni particles
such that the total energy of the system is U

E N U
N N

i i

i

∑
∑

=
=



Having said that, the probability of finding a particle 
in a certain configuration having some energy Ei is 
simply the ratio of the multiplicity of the given 
configuration to the total multiplicity of the closed 
system.
Based on Maxwell-Boltzmann Distribution this 
probability is defined as:

Where kB defined as the Universal Boltzmann constant
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Thus the total energy of the system can be defined as the summation of 
the probability Pi of a particle to have energy Ei in the ith state:

Using the Maxwell-Boltzmann Probability distribution function as defined 
in the previous slide, the total Energy can thus be expressed as

Where β is 1/kBT
The classical partition function Z is henceforth defined as the sum over 
the Boltzmann factor

Therefore having said this, one can easily explain the thermodynamics
of a particle enclosed in a closed system and its thermal equilibrium. 
This leads us to the Laws of Thermodynamics which are derived from 
the Postulates of Statistical Mechanics
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Laws of Thermodynamics
Zeroth Law:

If two systems are in thermal equilibrium with a third system, then 
they must be in thermal equilibrium with each other.

First Law:
Conservation of energy for a closed system

Energy can neither be created nor be destroyed. The change in the 
energy of a system is equivalent to the change in its internal energy and 
the work done by the system 

dQ = dU + dW
Second Law:

Entropy of a system remains conserved. The change in entropy of system 
leads to the change in its Energy ( for a reversible system) and is often 
represented as :

Third Law:
At absolute zero temperature, the entropy of the system becomes zero.
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Based on these laws of thermodynamic system, the fundamental 
thermodynamic potentials can be derived. We know that the 
internal energy, U, is dependent on intensive properties and the
randomness or the Entropy, S, of the system.
Thus U can be clearly represented as:

U= U(S,V,N1……Ni)
where V is the system volume.
Linking the thermodynamic parameter, T, with the statistical 

mechanical parameter, β and partition function Z, we can easily 
define the internal energy U: 
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But β is defined as
Thus,

Internal Energy in terms of classical parameters is 
thus represented as:
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Derivation of Maxwell relations using 
Legendre Transformations:

Legendre Transformations are carried out for any 
mathematical system to express dependent variables in 
terms of intensive properties or a combination of 
intensive and extensive properties. 
If we start from our first equation expressing U as a 
function of entropy, volume and number of particles, 
U=U(S,V, Ni); we can use the method of partial 
differentiation to attain the following result.
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For closed systems as in our case, we have assumed that the 
mass of the system is conserved, i.e. the total number of 
particles in the system remains unchanged which basically 
implies that        is zero.
Thus the system reduces down to 

With the following definition of the thermodynamic parameters:

The first law of Thermodynamics in terms of intensive and 
extensive properties can be reduced to 

dU=TdS-PdV
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Legendre Transformations…
In order to derive the remaining Maxwell relations for 
thermodynamic potentials, the following 
mathematical manipulation is carried out:

We know: dU = TdS – PdV (i)
d(TS) = TdS + SdT (ii)
d(PV) = PdV + VdP (iii)

Thus using these 3 equations we can derive the 
following relations:

d(U + PV) = TdS + VdP
d(U + PV -TS) = VdP – SdT
d(U – TS) = -SdT- PdV

The new functions thus generated are defined as follows:
Enthalpy : H = U + PV

Gibbs Energy : G = U+PV-TS=H-TS
Helmholtz Potential : F=U-TS



Maxwell Relations:
Once the Legendre transformations are made as shown in previous slide, 
we can relate the thermodynamic potentials as follows:

dU = TdS - PdV (i)
dH = TdS + VdP (ii)
dF = -SdT – PdV (iii)
dG= -SdT + VdP (iv)

In order to derive Maxwell relations, let us first consider equation (i) from 
above. 
Dividing the equation with dS and evaluating it at constant volume we get 
an expression for T as:

Using similar approach by taking derivatives and keeping one of the
variables constant, we can arrive at expressions for T,V, S and P in terms of
the thermodynamic potentials. These relations are called the Maxwell
relations. 

dU TdS PdV

T dU
dS V

= −

= 







T U
S

P U
V

T H
S

V H
P

V

S

P

S

= 





= −





= 





= 





∂
∂
∂
∂

∂
∂
∂
∂

S F
T

P F
V

S G
T

S G
P

V

T

P

T

= −





= −





= −





= −





∂
∂
∂
∂
∂
∂
∂
∂

Thus the Maxwell relations are obtained based on the equations (i) through (iv) 
and are presented below
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Further mathematical manipulation is carried out on Maxwell relations as 
shown below to relate the slopes of each variable S,V,T and P with respect 
to each other.



Statistical Mechanics and Thermodynamic 
Potentials:

From previous slides we saw how thermodynamic 
potentials U,F,G and H were obtained using Maxwell 
Relations in terms of the T,V,S and P. 
Using Maxwell- Boltzmann Distribution theory one 
can express each of these four potentials in terms of 
the partition function Z, where Z is given by 

Let us derive these potentials in terms of Z.
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Deriving U:

From previous slides, we know that U 
is the total energy of the system. Thus 
if the probability that a particle in the ith
state has energy Ei is given by Pi, then 
the total energy of the system is 
nothing but the summation over all the 
individual probabilities.

Thus with further simplifications we can 
write U as a function of Z and T as 
shown in the right.
We derived this previously (slides 8 
and 9)to arrive at the following 
relationship, where kB is the universal 
Boltzmann Constant. 
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Consider a particle in the ith energy state such that its energy 
is represented by Ei. Let x be any arbitrary variable ( it can be 
V,P,S or T) that characterizes the ith energy state. Let us 
assume that Ei changes in one dimension as a result of the 
quasi-static changes in x from x to x+dx. (quasi-static process refers 
to a very slowly changing process such that it almost always appears to be in 
equilibrium)
The resulting change in energy can be defined as 

Work done by a system is defined as the change in the 
energy of a system due to displacement. When a system is 
displaced from its equilibrium due to an applied force, its 
internal energy is raised and is often described as dW, or the 
work done.

∆E E
x
dxi

i=
∂
∂

Deriving Entropy,S:



According to Maxwell- Boltzmann Distribution, the 
mean value of any physical observable is given by:

where β= 1/kBT
Thus, the macroscopic work dW, can be expressed 
in a similar fashion as:

Substituting for ∆Ei in the expression above, we get:
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Using mathematical manipulations, we can express the derivative of Ei in terms of a summation series. 

Thus work dW can be expressed in terms of partition function as:

Partition function, Z, being a function of x and β, can be expanded in the following form:
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From previous slides, we have shown that, 
average energy U can be expressed in terms of β
and Z. 

Making further mathematical manipulations, as 
shown, we can express Z in terms of β and U.  
Making substitution for Uδ β, we can express 
d(lnZ) as shown in the equations on the right. 

From the 1st law of Thermodynamics, change in 
internal energy, U, and the work done in the 
system is equivalent to the heat gained/lost.

With these substitutions, Z can be expressed in 
terms of U and Q as shown.

According to the 2nd. Law of thermo, the change in 
enthalpy of a system is equivalent to the change in 
Q per unit temperature at a constant T.

Integrating this system, we get an expression for 
the entropy, S, in terms of Z and U as shown



Deriving Helmholtz potential, F:
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From the expression derived for entropy in 
the previous slide, we can derive and 
expression for helmholtz potential F in terms 
of Z and T. 

Start with the expression for S, and multiply 
throughout with T.

We know that F is defined as F=U-TS,

Thus, subtituting from above, an expression 
for F can be found. 



Deriving Enthalpy and Gibb’s Energy:
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Knowing the expressions for U, S and F, 
we can derive equations for H and G 
using the Maxwell relations as defined in 
previous slides.

First, we need to find an expression for 
the product of pressure and volume in 
terms of Z. 

Using maxwell equation of Entahlpy, H 
we get

Similarly for Gibb’s free energy: 
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