\qquad Answers \qquad

Transistor-Level Circuit Understanding

For the following switch level circuit, complete the truth table computed. If a floating or shorted output is detected, indicate that in the truth table. If no floats or shorts are detected, write the Boolean expression computed by the circuit.

A	B	C	Out
0	0	0	$\mathbf{1}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{0}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{1}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

"Out" is " 1 " if B is " 0 " or A ' and C ' are both " 0 ".

Write the Boolean expression for this function, Out $=\underline{\mathbf{B}^{\prime}+\mathbf{A}^{\mathbf{\prime}} \mathbf{C}^{\boldsymbol{\prime}}}$
\qquad Answers \qquad

Given the Boolean expression: Out $=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{ABC}=\mathbf{C}\left(\mathbf{A}^{\prime}+\mathbf{A B}\right)=\mathbf{C}\left(\mathbf{A}^{\prime}+\mathbf{B}\right)$ (if logic expression is not simplified, there should be 10 FET's below)
Complete the truth table.

A	B	C	Out	Note
0	0	0	0	
0	0	1	1	$A^{\prime} \mathrm{C}=1$
0	1	0	0	
0	1	1	1	$A^{\prime} \mathrm{C}=1$
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	$\mathrm{ABC}=1$

Draw the CMOS transistor diagram. Assume $\mathrm{A}, \mathrm{A}^{\prime}, \mathrm{B}, \mathrm{B}$ ', C, C ' signals are available.

\qquad Answers \qquad

Given the truth table.

A	B	C	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Write the Boolean expression as 3 terms: Out $=\mathbf{A B}+\mathbf{B C}+\mathbf{A C}$ from observation that Out is " 1 " whenever any two inputs are one).

By the minterm approach: \quad Out $=A^{\prime} B C+A B{ }^{\prime} C+A B C '+A B C$
Using Boolean Equalities: $\mathrm{A}^{\prime} \mathbf{B C}+\mathrm{ABC}=\mathrm{BC}$ and $\mathrm{ABC}=\mathrm{ABC}+\mathrm{ABC}+\mathrm{ABC}$

$$
\mathbf{O U T}=\mathbf{A B}+\mathbf{B C}+\mathbf{A C}
$$

Draw the CMOS transistor diagram. Assume $\mathrm{A}, \mathrm{A}^{\prime}, \mathrm{B}, \mathrm{B}$ ', C, C ' signals are available.

\qquad Answers \qquad

Bonus - use a Karnaugh map to find the simplest logic expression for Problem 3. There are three Essential Prime Implements, AC (blue), BC (green), and AB (red).

$\mathrm{A} \backslash \mathrm{BC}$	00	01	11	10
0	0	0	1	0
1	0	1	1	1

