ECE-2030b - Homework 4

Due Monday Oct. 7 before class

The answers to these problems will be posted after the due date.

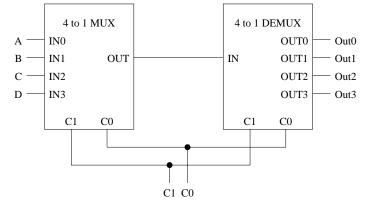
While homework problems are not graded on a right or wrong basis, credit will not be given for homework problems that are left blank or which do not demonstrate a reasonable attempt was made to work them.

Problems where the answer appears to have been copied (and where intermediate work would normally be shown) are also in jeopardy of receiving a lower grade.

Notes: PDF files with 2 sides per page are available. Links to them are in the right-hand column of the class schedule, www.csc.gatech.edu/~copeland/2030/schedule.html

Demultiplexers

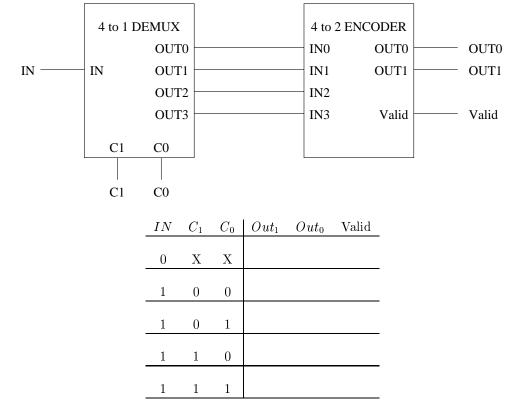
Part A Implement a 1-to-2 demultiplexer (described in the truth table below) using basic gates. Be sure to label the inputs, IN, C, Out_A , and Out_B .


IN	C	Out_A	Out_B
0	0	0	0
1	0	1	0
0	1	0	0
1	1	0	1

Part B Now design a 1-to-4 demultiplexer, define in the truth table below, using 1-to-2 demultiplexers. Be sure to label the inputs, IN, C_0 , C_1 , Out_A , Out_B , Out_C , and Out_D . Use this icon for your one to two demultiplexer.

IN	C_1	C_0	Out_A	Out_B	Out_C	Out_D
0	0	0	0	0	0	0
1	0	0	1	0	0	0
0	0	1	0	0	0	0
1	0	1	0	1	0	0
0	1	0	0	0	0	0
1	1	0	0	0	1	0
0	1	1	0	0	0	0
1	1	1	0	0	0	1
COut X In Out Y						

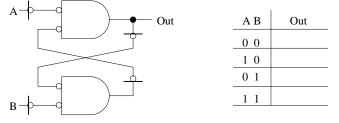
Multiplexer Demultiplexer


Complete the truth table for the circuit below. Assume the four inputs to the multiplexer are A, B, C, and D.

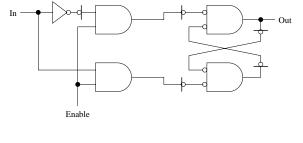
In_3	In_2	In_1	In_0	C_1	C_0	Out_3	Out_2	Out_1	Out_0
	a	Б		0	0				
D	С	В	A	0	0				
D	С	В	А	0	1				
D	С	В	А	1	0				
D	С	В	А	1	1				

Demultiplexer Decoder

Complete the truth table for the circuit below. Assume unselected outputs from the demultiplexer are zero.

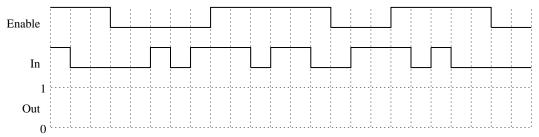


Decoders


Implement a two to four decoder with enable using only basic gates (AND, OR, NAND, NOR, and NOT). Assume that you have the input signals and their complements. Be sure to label the inputs IN_0 , IN_1 , and Enable, and the outputs OUT_3 , OUT_2 , OUT_1 , and OUT_0 .

Transparent Latches

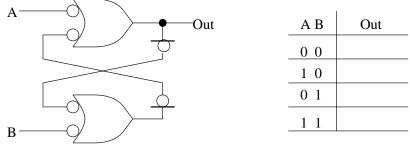
Part A Complete the truth table to describe the circuit below:



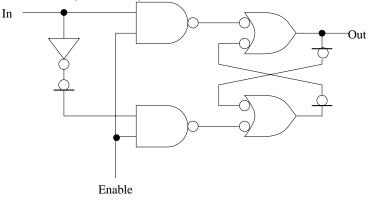
Part B Now consider a transparent latch based on this circuit (show below). How many transistors are used in this implementation?

<u>transistors</u>

Part C Complete the timing diagram for the latch output based on the specified inputs.

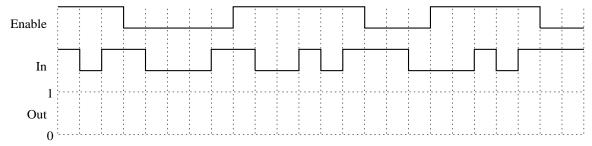


Part D Design a latch using four 2-input NOR gates and two inverters. Be sure to label the signals In, Out, and Enable.


Part E Design a transparent latch using four 2-input AND gates and five inverters. Be sure to label the signals In, Out, and Enable.

Part F Design a transparent latch using only four 2-input OR gates and six inverters. Be sure to label the signals In, Out, and Enable.

Part G Complete the truth table to describe the circuit below. Also indicate which states denote RESET, SET, and HOLD.



Part H Now consider a transparent latch based on this circuit (shown below). How many transistors are used in this implementation (show work)?

Part I Complete the timing diagram for the latch output based on the specified inputs.

