
Datapath Elements

The datapath elements are the functional blocks within a microprocessor that actually interact to
performcomputational operations. These tasks include reading/writing to memory, arithmetic, logic
operations, and numerical shift operations. These elements form the building blocks of a complete
datapath, discussed in the next chapter. Each of these datapath elements is built from the basic building
blocks you have already seen in this course. All microprocessors contain these elements in some form
or another, satisfying particular price/performance constraints. For example, an arithmetic unit that can
perform floating point calculations is much more complicated (and expensive) than an arithmetic unit
that only performs integer calculations. The elements we will talk about today are the register file,
adder/subtractor, logical unit, and shift unit.

Register File

The register file is an addressable bank of registers. This bank of registers forms a block of memory
that is local (i.e., on-board) the microprocessor. Each register is a 32-bit binary word, and our idealized
register file consists of 32 registers. Byaddressable, we mean that an address, or 5-bit binary input, is
used to specify which of the 32 registers that we wish to read from or write to. A sample schematic of
simple register file for reading and writing is shown in Figure 1.

register 0

register 1

r/w

r/w

DATA
IN

DATA
OUT

32 32

w0

w1

r0

r1

register 31
r/ww31

r31

. . .

. . .

5−32
decoder

A
�

E

5
�

WRITE
�

ADDRESS

WRITE
�

ENABLE

.

w0
w1

w31
5−32
decoder

A

E

5
�

READ
ADDRESS

READ
ENABLE

r0
r1

r31

CLK to each register

Figure 1: Generalized schematic of the inner workings of a register file

Each register in the register file isclockedlike the registers and flip-flops you have already seen. In
a typical CPU, different data is being read/written to the register file and the control lines are changing
on every clock cycle, enabling a steady sequence of read and write operations.

In practice, a register file may have multiple read and write ports. In the register file we will be using
in our datapath for this class, there are 2 read ports (X and Y) and one write port (Z). A functional block

1

register file
32x32

XA YA
�

ZA

5
�

5 5
�

32

3232

X
�

YZ

rwe

Figure 2: Control and I/O signals for a 32x32 register file with two read ports (X and Y) and 1 write
port (Z).

for this register is shown in Figure 2. Each of the three ports has its own 5 bit address selection line. On
every clock cycle, the registers specified by the XA and YA addresses are output (i.e., read) to the X and
Y bus. The control linerwe is theregister write enable. Whenrwe is set to 1, writing into the register
file is enabled, and whatever data is present on the Z bus is written to the register specified by the ZA
address bits. Whenrwe is set to 0, the data on the Z bus is ignored.

When we build our datapath in the next chapter to implement a simple microprocessor, the register
file serves as a local memory for performing numerical, logical, and memory read/write operations. The
registers are somewhat analogous to local (or temporary) variables when programming in a higher-level
programming language.

Adder/Subtractor

a/s

F

A
�

B

32 32

32

au en

unit
adder/subtractor

Figure 3: Adder/subtractor unit.

The adder/subtractor performs 32-bit addition subtraction. Its internal implementation is generally
similar to the adder/subtractor we discussed earlier in the course. The inputs A and B are two 32-
bit integers and the output F is A+B or A-B. Theau eninput enables the adder/subtractor when it is
set to 1. Thēa/s input controls whether the operation to be performed is an addition or subtraction.
The adder/subtractor has other outputs signals to indicate conditions such as numerical overflow; these
signals will be discussed later in the course.

2

Logical Unit

The logical unit is a device for performing logical operations on two boolean variables. Recall that a
truth-table for a 2 variable boolean function only has 4 possible rows, thus any possible truth-table for
a two-variable function can be implemented by specifying the 4 bits that describe this truth-table, as
shown in Fig. 4A. In practice, we can implement this by using a 4-1 multiplexor as a lookup table (Fig.
4B).

LF0
LF1
LF2
LF3

0

1 1

0

FBA
�

function
�

table

A

logical
unit

F

A
�

B

32 32

32

LF

lu en

C
D3

D2

D1

D0

S1

S0

Y
�

F

LF3

LF2

LF1

LF0

B 4−1 MUX
�

1 0
0 1

B

A
�

Figure 4: Logical unit implementation. A: Truth-table. B: Implemented as a lookup table using a 4-1
multiplexor. C: Symbol used for our 32-bit datapath.

Thus the boolean function to be implemented can be described by the 4 bit number LF, indicated
by the 4 bitsLF3LF2LF1LF0. For example, consider the operations listed in the table below and their
corresponding values for the lookup table:

function LF
AB 1000
A+B 1110
A +© B 0110
Ā+B 1101

For our 32-bit datapath, we use the logical unit symbol shown in Fig. 4C. This logic unit has 2 32-bit
inputs (A and B), a 32-bit output (F), the 4 LF bits that describe the logical function to be implemented,
andlu en, which is an enable bit that enables the operation of the logical unit.

The examples above and MUX in Fig. 4B show the logical operations using two 1-bit values, A and
B, as the input. How does the logical unit operate on 2 32-bit numbers, as shown in Fig. 4C? The logical
operation specified by the LF bits is performed on all 32 bits in parallel and independently. Thus within
the logical unit are 32 MUXes similar to Fig. 4B, and each MUX operates on a singlebit sliceof A and
B. For example, if an AND operation is being performed,F0 = A0B0, F1 = A1B1, and so on.

It is common to work in terms of hexadecimal notation when dealing with 32-bit wide numbers.
Below are examples of some logical operations performed using the logical unit.

3

A B LF operation F
0x4488CCFF 0x44444444 1110 OR 0x44CCCCFF
0x4488CCFF 0x0FF00FF0 1000 AND 0x04800CF0
0x12345678 0x0000FFFF 1000 AND 0x00005678

0x0FF0AAAA 0xFFFFAA55 0110 XOR 0xF00F00FF

Work out the above examples to understand that the results in the table are correct. Write out A and
B in binary, one on top of each other, and then perform the specified boolean operation on each column
of bits. Using the first row as an example:

A: 0100 0100 1000 1000 1100 1100 1111 1111
B: 0100 0100 0100 0100 0100 0100 0100 0100
A+B: 0100 0100 1100 1100 1100 1100 1111 1111

A common use for the bit-wise AND and OR functions ismasking, which means to selectively set
or zero out particular bits in a number. The AND function can be used to zero out particular bits, and
the OR function can be used to set particular bits. The example above illstrates how the bits inB (the
mask) are used to set particular bits inA.

Shift Unit

Another common operation performed by microprocessors are shift operations. The shift operation
takes a binary number and shifts it left or right a specified number of bits. There are 3 different kinds of
shift operations:logical, arithmetic, andcircular. The difference among these operations are how the
“end-conditions” are handled – where the bits go that are shifted off one end and what bits are introduced
into the “empty bits” inserted at the other end of the shift. In the examples below, we consider the effects
of each type of shift on the numberA = 11100100.

• Logical shift. In the logical shift, the empty bits (the most-significant bits with a right shift, and
the least-significant bits with a left shift) are filled with zeros; this is sometimes referred to as
padding. A logical right-shift of 2 bits onA yields 00111001, while a logical left-shift of 2 bits
onA yields 10010000.

• Arithmetic shift. In the arithmetic shift, the least-significant bits are padded with zero when left
shifting. However, when right-shifting the most-significant bit iscopiedinto the vacant bit posi-
tions. An arithmetic right-shift of 2 bits onA yields 11111001, while an arithmetic left-shift of 2
bits onA yields 10010000.

• Circular shift. In the circular shift, bits that are shifted off of one end of the number are inserted
at the other end – the bits simply have their positions rotated. A circular right-shift of 2 bits onA
yields 00111001 and an circular left-shift of 2 bits onA yields 10010011.

What are these shifts used for? We will see later in the semester that there are many uses for splitting
a binary number intobit fields– groupings of bits within a number that have particular meaning, and all
of these bit fields are packed together. These methods are often used in conjunction with the masking
and bit-setting uses of the logical unit described earlier.

4

Y
�

D3 D2 D1 D0
S1

S0 4−1 MUXd
�	

s

A iA
�

A
�

i+n i−n

iF

Y
�

D3 D2 D1 D0
S1

S0 4−1 MUXd

s

A
�

iAA

iF

i+2 i−2k kA B

s
d 2 −shifter

s
d 2 −shifter

s
d 2 −shifter

s
d 2 −shifter

0
�

3
�

2
�

1

A

F

d
s3

s2

s1

s0

C

Figure 5: Shifter implementation. A: A single bit-slice of ann-shifter. B: A single bit-slice of a 2k-
shifter. C: Implementation of a barrel shifter by cascading 2k-shifters.

5

unit

F

A
�

B

32 32

32

shift

su en

st
2 shift types

0 = logical
1 = arithmetic
2 = rotate

Figure 6: Shifter datapath element.

The arithmetic and logical shifts are also used to perform efficient integer multiplication and division
by 2. A logical left-shift one bit is the same as multiplying an unsigned binary value by 2, and a logical
right-shift is the same as dividing an unsigned binary value by 2. If the number is signed (in 2’s-
complement notation), the arithmetic shift performs the same operation (multiplication or division by
2) while preserving the sign of the number. An arithmetic left-shift can change the sign of a number –
what does this mean?1 Another use of the arithmetic right-shift is to convert a signed integer to a higher
degree of precision, such as converting a 16-bit number to a 32-bit number.

How is a shift implemented in terms of logical devices? Just as in the logical unit described earlier,
the output for each bit of a shift operation can be implemented using a 4-1 MUX, as shown in Fig. 5A.
The two select inputs ares (1=shift, 0=no shift) andd (1=right, 0=left). The outputFi is eitherAi (no
shift),Ai+n (right shiftn bits), nrAi−n (left shiftn bits). These inputs are slightly modified for the most
and least significant bytes.

In practice, a shifter unit will shift a given input a specified number of bits left or right, while the
MUX in Fig. 5A showing the shifter for a single bit-slice is “hard-wired” to shift left or rightn bits.
How do we design a shift unit that will shift left or right an arbitrary number of bits? There are many
possible solutions you may think of, most of which involve rather complex combinatorial logic. The
most compact solution is through the use of a cascade of 2k-shifters, as shown in Fig. 5B. The 2k-shifter
is hardwired to shift an input left or right 2k bits. For example, a 23-shifter will shift an input left or
right 8 bits. By cascading several 2k-shifters in a row, as in Fig. 5C, we can shift an arbitrary number of
bits left or right. This cascade of shift units is called abarrel shifter.

For example, we wish to shift a number right 11 bits. Looking at Fig. 5C,d=1 (right shift), and
s3s2s1s0 = 1011 (binary for 11). The upper unit shifts the number right 8 bits (s3 = 1), the next unit
does not shift at all (s2 = 0), the next unit shifts the number right 2 bits (s1 = 1), and the bottom unit
shifts the number right 1 bit (s0 = 1). The final outputF has thus been shifted right 11 bits.

The shift unit to be used in our datapath is shown in Fig. 6.A is a 32-bit number containing the data
to be shifted, andB is a 32-bitsignednumber indicating the number of bits to be shifted right (positive)
or left (negative). The shifter also has inputs specifying the shift-type (st) and enabling the device (su
en).

1Answer: An overflow condition occurred

6

Summary

In this chapter we have described the basic elements that comprise our single-cycle datapath that will
be put together in the next chapter. By putting these elements together, will will have the basic build-
ing blocks for manipulating data (adder/subtractor, logical unit, shift unit) and reading/writing to local
memory (register file).

7

