Problem 1:

$$
Y(x, t)=1.5 \cos \left(2 \pi \cdot 10^{8} t-\frac{2 \pi}{3} x+\frac{\pi}{3}\right) e^{-.0005 x} \quad(\text { Volts })
$$

(a) The Amplitude is 1.5 Volts at spatial position $\mathrm{x}=0 \mathrm{~m}$. It has an attenuation of $e^{-.0005 x}$. The Period, $T=\frac{2 \pi}{2 \pi \cdot 10^{8}} S=10^{-8} S$
The frequency is $1 / \mathrm{T}=10^{8} \mathrm{~Hz}=100 \mathrm{MHz}$
The wavelength, $\lambda=c / f=3 \mathrm{~m}$
The phase, $\phi=\pi / 3 \mathrm{rad}$
The attenuation factor, $\alpha=.0005 \mathrm{~Np} / \mathrm{m}$ (assuming the negative sign is intrinsic to $+x$ prop).
(b) $\beta=2 \pi / \lambda=2 \pi / 3 \quad(\mathrm{rad} / \mathrm{m})$
$\omega=2 \pi \mathrm{f}=2 \pi \cdot 10^{8}(\mathrm{rad} / \mathrm{s})$
(c) The wave propagates in the $+x$ direction due to negative sign in front of β. This occurs due to a phase front needing to remain constant - increasing time requires a positive increase in x to maintain neutrality with time for the phase front.
(d) The amplitude at $t=10^{-5} \mathrm{~s}$ and $\mathrm{x}=3000 \mathrm{~m}$ is given by $1.5 \cos (2000 \pi-2000 \pi+\pi / 3) \mathrm{e}^{-1.5}$ This value is .167 Volts which satisfies the .1 V requirement for reception.

Problem 2:

(a) $L=.1 \mathrm{~m}, \mathrm{f}=1 \mathrm{GHz} \Rightarrow \lambda=.3 \mathrm{~m}$, so $\mathrm{L} / \lambda=1 / 3 \gg .01 \Rightarrow$ do not ignore tline effects
(b) $L=1 \mathrm{~m}, \mathrm{f}=1.8 \mathrm{GHz} \Rightarrow \lambda=.1667 \mathrm{~m}$, so $\mathrm{L} / \lambda=6 \gg .01 \Rightarrow$ do not ignore tline effects
(c) $\mathrm{L}=.01 \mathrm{~m}, \mathrm{f}=.9 \mathrm{GHz} \Rightarrow \lambda=.333 \mathrm{~m}$, so $\mathrm{L} / \lambda=.03>.01 \Rightarrow$ do not ignore tline effects (close)
(d) $L=.05 \mathrm{~m}, \mathrm{f}=60 \mathrm{GHz} \Rightarrow \lambda=.005 \mathrm{~m}$, so $\mathrm{L} / \lambda=10 \gg .01 \Rightarrow$ do not ignore tline effects

Problem 3:

(a) $\Gamma=\frac{30-j 60-50}{30-j 60+50}=.2-.6 j$
(b) $\operatorname{SWR}=\frac{1+|\Gamma|}{1-|\Gamma|}=\frac{1+.6325}{1-.6325}=4.4415$
(c) $Z_{\text {in }}(.35 \lambda)=\frac{(30-j 60)+j 50 \tan (.7 \pi)}{50+j(30-j 60) \tan (.7 \pi)}(50)=78.4644+j 98.2431$
(d) Under a perfect match, 10 W can be delivered. This can be interpreted as the input power to the system is 10 W . For the match at hand, $|\Gamma|=.6325$. Thus, the power received is given by $\left(1-|\Gamma|^{2}\right) \mathrm{P}_{\text {in }}=6 \mathrm{~W}$

Problem 4:

(a) $Z_{o}=50 \Omega, L=\lambda / 4, Z_{L}=60 \Omega$. Find the input impedance. For a quarter-wave length section, the input impedance is given by $Z_{\text {in }}=Z_{0}{ }^{2} / Z_{L}=2500 / 60=41.67 \Omega$
(b) For an open circuit, $\Gamma=1$. For an open circuit $Z_{\text {in }}=-j Z_{o} \cot (\beta I)$. So for $L=\lambda / 8, Z_{i n}=-j 50 \Omega$ This circuit behaves as a capacitor due to the negative complex impedance.
(c) For a short circuit, $\Gamma=-1$. For a short circuit, $Z_{i n}=j Z_{0} \tan (\beta I)$. For for $L=\lambda / 6, Z_{i n}=j 86.6 \Omega$ This circuit behaves as an inductor due to the positive complex impedance.

Problem 5:

(a) Because the load is a short circuit, the reflection coefficient is -1 .
(b) Because the input impedance is dependent on a tangent function, it is periodic with pi. Thus, every $.5 \lambda$ returns to the load impedance. Thus, 2.3λ is equivalent to $.3 \lambda$. So, $Z_{\text {in }}=j 50 * \tan (.6 \pi)=-j 153.88 \Omega$.
(c) The input admittance is given by $1 / \mathrm{Z}_{\text {in }}=.0065 \mathrm{j} \mathrm{S}\left(\right.$ Siemens or $\left.\Omega^{-1}\right)$.

Problem 6:

$Z_{0}=50 \Omega$
$Z_{L}=75-j 20 \Omega$
$\mathrm{f}_{\mathrm{o}}=6 \mathrm{GHz}$
(a) Because the real component of the load is larger than Z_{o}, the correct circuit topology to be used is:

Using the design equations,

$$
\begin{gathered}
B=\frac{X_{L} \pm \sqrt{R_{L} / Z_{o}} \sqrt{R_{L}^{2}+X_{L}^{2}-Z_{o} R_{L}}}{R_{L}^{2}+X_{L}^{2}}=.006373,-.013015 \\
X=\frac{1}{B}+\frac{X_{L} Z_{o}}{R_{L}}-\frac{Z_{o}}{B R_{L}}=38.9444,-38.9444
\end{gathered}
$$

For (.006373, 38.9444)

$$
\begin{aligned}
& L=\frac{X}{\omega}=\frac{38.9444}{2 \pi \cdot 6 \cdot 10^{9}}=1.033 \mathrm{nH} \\
& C=\frac{B}{\omega}=\frac{.006373}{2 \pi \cdot 6 \cdot 10^{9}}=.16913 \mathrm{pF}
\end{aligned}
$$

For (-.013015, -38.9444)

$$
\begin{aligned}
& L=\frac{1}{\omega B}=2.0381 n H \\
& C=\frac{1}{\omega X}=.68112 n F
\end{aligned}
$$

Zin for (1.033 nH, . 16913 pF)

$$
Z_{\text {in }}=j \omega L+j \omega C \| Z_{l}
$$

This results in the following gamma plot:

Using the cursor, $\Delta f=24.45 \%\left(.05 \Gamma_{m}\right)$

For the second set ($2.0381 \mathrm{nH}, .68112 \mathrm{pF}$)

$$
Z_{i n}=-\frac{j}{\omega C}+\left(\frac{-j}{\omega L}\right) \| Z_{L}
$$

This results in the following gamma plot:

Using the cursors, $\Delta \mathrm{f}=18.02 \%$
(b) $Z_{\mathrm{L}}=25-\mathrm{j} 20 \Omega$. This results in the second circuit topology for matching:

Using the design equations:

$$
\begin{gathered}
X= \pm \sqrt{R_{L}\left(Z_{L}-R_{L}\right)}-X_{L} \\
B=45,-5 \\
B= \pm \frac{\sqrt{\left(Z_{o}-R_{L}\right) / R_{L}}}{Z_{o}}= \pm .02
\end{gathered}
$$

This results in the first LC pair as $(B, X) \Rightarrow$

$$
\begin{aligned}
& L=\frac{X}{\omega}=1.1937 n H \\
& C=\frac{B}{\omega}=.53052 p F
\end{aligned}
$$

This produces a Zin of

$$
Z_{i n}=j \omega C \|\left(j \omega L+Z_{L}\right)
$$

This additionally yields the following gamma plot

This results in a $\Delta f=9.7 \%$

The second pair of LC (for the negative values)

$$
\begin{aligned}
& L=\frac{1}{\omega B}=1.3263 \mathrm{nH} \\
& C=\frac{1}{\omega X}=5.3052 p F
\end{aligned}
$$

This produces a Zin of:

$$
Z_{\text {in }}=\left(\frac{-j}{\omega L}\right) \|\left(\frac{-j}{\omega C}+Z_{L}\right)
$$

This yields a gamma plot of:

Problem 7:

$\mathrm{f}=100 \mathrm{MHz}, \quad \mathrm{Z}_{\mathrm{o}}=300 \Omega, \quad \mathrm{Z}_{\mathrm{L}}=73 \Omega$
(a) Quarter-Wavelength Transformer (electrical length $\lambda / 4$)

$$
Z_{\lambda / 4}=\sqrt{Z_{o} Z_{L}}=147.99 \Omega
$$

(b) Determine the physical length:

$$
\lambda=\frac{C_{o}}{\sqrt{\epsilon_{r}} f}=\frac{3 \cdot 10^{8}}{1.6 \cdot 10^{8}}=1.875 \mathrm{~m} \Rightarrow \frac{\lambda}{4}=.4688 \mathrm{~m}
$$

(c) Determine the bandwidth given $\Gamma_{\mathrm{m}}=.05$

$$
\frac{\Delta f}{f_{o}}=2-\frac{4}{\pi} \cos ^{-1}\left[\frac{\Gamma_{m}}{\sqrt{1-\Gamma_{m}^{2}}} \frac{2 \sqrt{Z_{o} Z_{L}}}{\left|Z_{o}-Z_{L}\right|}\right]=2-\frac{4}{\pi} \cos ^{-1}\left[\frac{.05}{\sqrt{1-.05^{2}}} \frac{2 \sqrt{73 \cdot 300}}{|300-73|}\right]=8.32 \%
$$

(d) Use a 3 Stage Binomial Transformer to Design a more bandwidth efficient match:

The recursive formula for generating the section impedances is:

$$
\begin{gathered}
\ln \left(\frac{Z_{n+1}}{Z_{n}}\right)=2^{-N} C_{n}^{N} \ln \left(\frac{Z_{L}}{Z_{o}}\right) \\
Z_{o}=300 \Omega \\
Z_{1}=251.42 \Omega \\
Z_{2}=148 \Omega \\
Z_{3}=87.11 \Omega \\
Z_{L}=73 \Omega
\end{gathered}
$$

(e) The bandwidth for this system is given by $(\mathrm{N}=3)$:

$$
\frac{\Delta f}{f_{o}}=2-\frac{4}{\pi} \cos ^{-1}\left(\frac{\frac{\Gamma_{m}}{2}}{\left|\frac{Z_{L}-Z_{o}}{2^{N}\left(Z_{L}+Z_{o}\right)}\right|}\right)=57.3 \%
$$

