Problem 1:

(a) $|\Gamma|=\frac{a}{a+b}=.247$

Phase of $\Gamma=76^{\circ}$
(b) $\operatorname{SWR}=\frac{1+|\Gamma|}{1-|\Gamma|}=1+\frac{2 a}{b}=1.66$
(c) $\tilde{Z}_{\text {in }}(.35 \lambda)=.6-j .025 \rightarrow Z_{\text {in }}(.35 \lambda)=Z_{o} \tilde{Z}_{\text {in }}(.35 \lambda)=30-j 1.25 \Omega$
(d) $\tilde{Y}_{i n}(.35 \lambda)=1.65+j .02 \rightarrow Y_{i n}(.35 \lambda)=Y_{o} \tilde{Y}_{\text {in }}(.35 \lambda)=.033+$ j. $0004 \Omega^{-1}$
(e) Seen on the Smith Chart for problem 1: the minimal distance $=.104 \lambda$
(f) $\Gamma=\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}=.2425<75.96^{\circ}$
$S W R=\frac{1+|\Gamma|}{1-|\Gamma|}=1.64$
$\tilde{Z}_{i n}(.35 \lambda)=Z_{o}\left(\frac{Z_{L}+j Z_{o} \tan (\beta l)}{Z_{L}+j Z_{o} \tan (\beta l)}\right)=30.5-j 1.09 \Omega$

The Smith Chart values are in fairly good agreement with those analytically calculated.

Problem 1 Smith Chart

Problem 2:

(a) $\quad \Gamma_{L}=-1$
(b) $\quad \tilde{Z}_{\text {in }}(2.3 \lambda=.3 \lambda)=-j 3.08 \rightarrow Z_{\text {in }}(2.3 \lambda=.3 \lambda)=-j 154 \Omega$
(c) $\quad \tilde{Y}_{\text {in }}(2.3 \lambda=.3 \lambda)=j .325 \rightarrow Y_{\text {in }}(2.3 \lambda=.3 \lambda)=j .0065 \Omega$

Smith Chart for Problem 2

Problem 3,4,5,6:

Smith Chart for Problem 3,4,5,6 Used for Determining Stub Distances

Smith Chart used for Determining Stub Lengths:

Problem 3: Series - Open

Distance $1=.063 \lambda$ (Black)

- Length $=.328 \lambda$

Distance $2=.355 \lambda \quad$ (Blue)

- Length $=.173 \lambda$

Problem 4: Series - Short

Distance $1=.063 \lambda$ (Black)

- Length $=.078 \lambda$

Distance $2=.355 \lambda$ (Blue)

- Length $=.424 \lambda$

Problem 5: Shunt - Open

Distance $1=.106 \lambda$ (Green)

- Length $=.424 \lambda$

Distance $2=.314 \lambda \quad$ (Red+Black)

- Length $=.078 \lambda$

Problem 6: Shunt - Short

Distance $1=.106 \lambda$ (Green)

- Length $=.173 \lambda$

Distance $2=.314 \lambda \quad($ Red + Black $)$

- Length $=.328 \lambda$

