ECE 3065

MIDTERM 1 (60') - 3.October 2005 - Max 110%

1. The amplitude of a satellite Radio Wave is described by the function:

$$z(y,t) = 0.16sin(24 \times 10^{9}\pi t + 160\pi y - \frac{\pi}{3}) e^{0.0003y} \quad (Volts/m)$$
 (1)

- (a) What is the amplitude A, the frequency f, the wavelength λ , the reference phase ϕ_o and the attenuation factor α ? The velocity of light in the air is $c = 3 \times 10^8 m/sec$. (10 %)
- (b) Assuming that the propagation path is nonmagnetic, what is the value of the phase velocity v_p , the dielectric constant ϵ_r and the conductivity σ ?? (5 %)
- (c) The above wave propagates at a 75Ω lossless coaxial line which is terminated in a 40-room motel. Each room's transceiver is equivalent to a series combination of a resistor R = 3000
- i t $L = 39.8nH (= 1000/(8\pi))$. Assuming that the operating frequency is 12 GHz, what is the reflection Coefficient Γ and the Standing Wave Ratio S at the load? If a value of SWR smaller than 5 is considered to be satisfactory matching, how could you characterize this matching? (15 %)
- (d) Could you match this load with a quarter-wavelength transformer assuming that the only parameter you can modify is the position of the transformer along the feeding line? **BONUS** (10%)
- (f th l t i all th of th t a i io li i $l = 20.25\lambda$, what is the input impedance Z_{in} for the load of (c)? Does the load behave as an inductor or as a capacitor? (10 %)
- 2. The electric field of a remote-sensing uniform plane wave propagating in nonmagnetic lossless cosmic powder (assume that the intrinsic impedance is equal to the free space one) is given by: $\tilde{E}=(\hat{x}-\hat{y})$ 15 $e^{-j160\pi z}$ ($\mu V/m$) for a remote sensing satellite operating at 18GHz.
- (a) Specify the polarization of the wave. (10 %)
- (b) Calculate the magnetic field in phasor form. (10 %)
- (c) What would be the polarization if the magnetic field was given by: $\tilde{H} = (\hat{x} + j\hat{y})5e^{-j160\pi z} (\mu A/m)$? (10 %)
- **3.** A lossless 50Ω microstrip transmission line, that is used in collision avoidance radars, is to be mtached to a horn antenna with Z_L =(100+j25) Ω using a series short-circuited stub. Use the Smith chart to find:
- (a) the reflection coefficient Γ and the standing-wave ratio without the stub, (5 %)
- (b) the input impedance at 0.25λ from the load, (5 %)
- (c) the shortest line length for which the input impedance is purely resistive, (5 %)
- (d) the stub length and the distance between the antenna and the stub (2 solutions).(a) Find the direction of wave propagation. (15 %)

GOOD LUCK !!!