2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

Steady Spiraling Motion of Gliding Robotic Fish

Feitian Zhang, Fumin Zhang and Xiaobo Tan

Abstract— A gliding robotic fish is developed for promising
applications in aquatic environment monitoring. The design
concept combines the strengths of both underwater gliders and
robotic fish, featuring long operation duration and high maneu-
verability. This paper presents both analytical and experimental
results for the three-dimension spiraling motion, an essential
working pattern of the gliding fish for detecting pollution in
a water column. A dynamic model of the gliding robotic fish
with actuated tail is established. Then the steady-state spiraling
equations are derived and solved recursively using Newton’s
method. The gliding fish prototype is tested in experiments.
Both model prediction and experimental results show that the
spiraling motion has very low energy consumption, and the
gliding fish can achieve high maneuverability with a turning
radius less than 1 m, 2.5% of the reported turning radius of a
typical underwater glider.

I. INTRODUCTION

Aquatic environmental protection is a key challenge for
sustainable development worldwide. Autonomous underwa-
ter robots are being widely used in this domain to patrol
seaports, track oil spills, and monitor harmful algal blooms.
High energy-efficiency and high maneuverability are desired
characteristics for the robots in order to operate in ver-
satile environments such as lakes, rivers, and the ocean.
Underwater gliders, which propel themselves by changing
net buoyancy and center of gravity, have demonstrated low
power consumption and long operating duration. After t-
wo decades of development, gliders are now commercially
available, examples of which include the Seaglider [1], the
Spray [2] and the Slocum [3]. These gliders are designed
for ocean sampling purposes with typical length within 1-2
meters, weight at 50 kg and above. Their maneuverability is
not designed to operate in environments such as rivers and
shallow lakes. A different class of aquatic robots that mimic
fish motion has been developed in parallel to the gliders over
the past two decades. These robots, often called robotic fish,
can swim by deforming the body and fish-like appendages
[4]-[10]. Like their biological counterparts, robotic fish are
highly maneuverable in a broad range of environments.

We have developed a gliding robotic fish. Our design
aims to combine features from an underwater glider and
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a robotic fish [11] to offer maneuverability and endurance
at the same time. Locomotion of the gliding robotic fish
is generated mostly by controlling the net buoyancy, and
changing the center of mass, similar to an underwater glider.
On the other hand, steering is mostly achieved by actively
controlled fins, similar to a robotic fish. In addition, the
gliding robotic fish is designed to have much smaller size
than an commercial underwater glider. With appropriate
sensing capability developed, we expect the gliding fish to
be suitable for locating pollutants in shallow water for an
extended period of time, e.g., weeks or even months.

This paper presents theoretical and experimental results on
designing a three dimensional motion pattern for the gliding
robotics fish to sample a water column. A water column
is a conceptual narrow volume (like a narrow cylinder) of
water stretching vertically from the surface to the bottom.
Water column sampling is a routine surveying method in
environmental studies to evaluate the stratification or mixing
of water layers [12]. Aquatic pollution detection inside a
water column with approximately one meter radius is fre-
quently performed for environmental monitoring in shallow
water. Existing approach for water column sampling relies on
humans to operate the boat and to deploy sensing packages
on the spot, which is labor-intensive and costly. We propose
an autonomous solution based on the spiraling motion that
can be performed by the gliding robotic fish with low-energy
consumption. Spiraling motion have been observed for un-
derwater gliders, which is typically enabled translational and
rotational displacement of an internal movable mass [13]-
[16]. So far, the spiraling motion produced by underwater
gliders have typical turning radius on the order of 30-50
meters, not suitable for the water column sampling tasks in
lakes and shallow areas. The spiraling motion produced by
our gliding fish, on the other hand, can achieve the desired
turning radius of less than one meter, due to the overall
smaller dimensions and the controllable moment generated
by the tail.

Following the theoretical approach established in the lit-
erature on analyzing the dynamics of underwater gliders
[13]-[16], we first derive the three-dimension steady-state
equations for the gliding fish from the dynamics model. The
major extension of our model from the existing glider models
is the incorporation of an actuated tail, which results in
different sets of steady equilibrium motion from those of an
underwater glider. We have also employed Newton’s method
to compute the equilibrium motion, which gives reliable
convergence. The influences of various control inputs on the
spiraling performance, such as turning radius and descending
speed, are computed. Furthermore, we have developed a g-
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Fig. 1. The mass distribution of the gliding robotic fish (side view).

liding fish prototype, and performed experiments to compare
the theoretical results with experimental observations.

II. DYNAMICS MODELING OF A GLIDING FISH
A. Full Dynamic Model

A gliding robotic fish is a combination of a miniature
underwater glider and a robotic fish, and the modeling for
a gliding robotic fish combines the models of both, mainly
based on the model of an underwater glider, with the flapping
tail treated as one of the sources for external forces and
moments. In this paper, we model the gliding fish as a rigid
body system, including one internal movable mass, whose
location is controllable, like a miniature underwater glider,
with an adjustable tank inside for tuning the net buoyancy
[17], [18]. On the other hand, the flapping tail provides
external thrust force and side force as well as the yaw
moment as modeled in most robotic fish literature [10].

Fig. 1 shows mass distribution of the gliding fish system.
The stationary body mass m (excluding the movable mass)
has three components: gliding fish hull mass m, (uniformly
distributed), point mass m,, for gliding fish nonuniform hull
with displacement r,, with respect to the geometry center
(GC), and ballast mass m; (water in the tank) at GC, which
is a simplification since the effect on the center of gravity
caused by the water in the tank is negligible compared with
the moving mass. The movable mass m, which is located
at rp with respect to GC, provides a torque to the gliding
fish system. The mechanism for the moving mass is a track
system fixed along the longitudinal axis inside the fish body
and driven by a linear actuator. The fish body displaces a
volume of fluid of mass m . Let mg = ms+m—m represents
the excess mass (negative net buoyancy). The gliding fish
will sink if mg > 0 and vice versa.

The relevant coordinate reference frames are defined fol-
lowing the standard convention. The body-fixed reference
frame, denoted as Owxpypz, and shown in Fig. 2, has its
origin O at the geometry center, so the origin will be
the point of application for the buoyancy force. The Oxy
axis is along the body’s longitudinal axis pointing to the
head; the Oz, axis is perpendicular to Oz, axis in the
sagittal plane of the gliding fish pointing downward, and Oy,
axis is automatically formed by the right-hand orthonormal
principle. In the inertial frame Axyz, Az axis is along gravity
direction, and Az is defined in the horizontal plane, while
the origin A is a fixed point in space.

Fig. 2. Illustration of the reference frames and hydrodynamic forces for
the gliding fish.

As commonly used in the literature, R represents the
rotation matrix from the body-fixed reference frame to the
inertial frame. R is parameterized by three Euler angles: the
roll angle ¢, the gitch angle 6 and the yaw angle . Let vy, =
[ V1 Vg U3 ] and wp = [ w1 Wy ws ]T stand for
the translational velocity and angular velocity, respectively,
expressed in the body-fixed frame. The subscript b indicates
that the vector is expressed in the body-fixed frame, and this
notation is applied throughout this paper. Here

clcp spsbcy) — cpsyp  cpsbc) + spsy
R=| cOs¥ coc)+ spslsp —spc) + cpsOsiyp
—s6 s¢ch cocl

ey
where s(-) is short for sin(-) and ¢ for cos(+).

We assume the gliding fish tail is rigid and pivots at the
junction of the fish body and the tail along Oz, direction.
The tail induces an external thrust force F; on the gliding
fish body when the tail flaps. There are also hydrodynamic
forces and moments, coming from the interaction between
the tail and the relatively flowing water.

By incorporating the tail model into the existing derived
dynamic model of underwater gliders [17], we get the
following dynamics model for the gliding robotic fish:

M71 (M’Ub X Wp + mogRTk + Fezt) (2)
J1 (—jwb—l—Jwb X wp + Moy X vp + Tept
+myugrew x (RTk) +mgry x (RTE))  (3)

Vp =

wp =

Here M = (m; + m)I 4+ My, where I is the 3 x 3
identity matrix, and M is the added-mass matrix, which
can be calculated via strip theory [19]. J is the sum of the
inertia matrix due to the stationary mass distribution and the
added inertia matrix in water. k is the unit vector along the
Az direction in the inertial frame. r,, is a constant vector,
and 7y, is the controllable movable mass position, which in
our gliding fish design has one degree of freedom in Oz
direction, rp, = [ 7, 0 0 ]T. F..: stands for all external
forces: the external thrust force F; induced by tail flapping,
and the external hydrodynamic forces (lift force, drag force
and side force) acting on the gliding fish body, expressed in
the body-fixed frame. And Te,: is the total hydrodynamic
moment caused by Fegy.
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0 = masBVchchuws; — masacBV sochws; — mogsh — 1/2pV28(Cpo + CHa? + C%6%)cach

—1/2pV28(C5 B + CLpd)casB + 1/2pV2S(Cro + Cfa)sa Q1)
0 = —masacBVsbws; —mycacBV chpchws; +mogsodcd —1/2pV2S(Cpo + CHa’ + 0%62)56

+1/2pVS(CgpB + Cépd)cp (22)
0 = mycacBVspchws; +masBV sOws; +mogepcd —1/2pV2S(Cpo + CHa? + C’%éz)sacﬁ

—1/2pV2S(ChpB + Copd)sasf — 1/2pV28(Cro + Cfa)ca (23)
0 = (Jo— J3)spchepchws; + (ma — ms3)sBsacBV? — my,gr,soch + 1/2,0VQS(C'1/\3/IRB — Kj150ws;)cac

—1/2pV2S(Chty + O + Kgaspchuws; )cas — 1/2pV25(C’1/\3/[yﬁ + K3cpchuws; + C’g/lyc;)soz (24)
0 = (J1 — J3)s0chpchw3; + (mz — my)cacBsacBV? — my,gry,s — mgryched

+1/2pV2S8(Cyy, B — Kq180ws:)sB + 1/2pV2S(Cag, + Oy + Kg2sécws; ) (25)
0 = (Jo— J1)sOspchws; + (m1 — ma)cacBsBV? + mgr,spcd + 1/2pV25(C'f€[Rﬂ — Kj150ws;)sacB

—1/2pV2S(Cty + Cfp, 0 + Kgaspcws;)sas + 1/2pV2S(C'ﬁlyﬁ + Kyzcpcbuws; + C’j‘wyé)coz (26)

B. Hydrodynamic Model

In order to model hydrodynamics, we first introduce the
velocity reference frame Oz,y,z,. Ox, axis is along the
direction of velocity, and Oz, lies in the sagittal plane
perpendicular to Oz,. Rotation matrix Ry, represents the
rotation operation from the velocity reference frame to the
body-fixed frame:

cacfl —casf —sa
Ry, = |  sf B 0 4)
sacf  —sasf  ca
, where the angle of attack @ = arctan (vs/v;) and the

sideslip angle 8 = arcsin(va/||vp||)

The hydrodynamic forces include the lift force L, the drag
force D, and the side force SF'; hydrodynamic moments
include the roll moment M, the pitch moment M5, and
the yaw moment Mjs. All of those forces and moments are
defined in the velocity frame [20]. And if we further assume
the tail is not flapping, which means F; = 0, we will have
the following relationship:

Fewt =Ry [ -D SF —L]" (5)

(6)

The hydrodynamic forces and moments are generally
dependant on the angle of attack «, the sideslip angle /3,
and the velocity magnitude V' [21], [22]:

Tewt = Row [ My Mz M; }T

D = 1/2pV2S(Cpo + CHa® + Cp6%) (7)
SF = 1/2pV2S(CE,.B8 + Cpo) ®)
L = 1/2pV?S(Cpo+ Cla) )
My = 1/2pV28(CY,;,. B+ Kqwi) (10)
M, = 1/2pV2S(Cuy + CSp o+ Kgpwa) (1)
Ms = 1/2pV28(Ch;, B+ Kgsws + C3y, 0) (12)

where p is the density of water and S is the characteristic
area of the gliding fish. ¢ is defined as the tail angle, the

angle between the longitudinal axis and the center line of
the tail projected into the Oxpys, plane, with Oz, axis as
the positive direction. Kg1, Kg2, Kg3 are rotation damping
coefficients. All other constants with C” in their notations
are hydrodynamic coefficients, whose value can be evaluated
through CFD-based water tunnel simulation as we did for the
miniature glider [17] [23].

III. THREE-DIMENSION SPIRALING MOTION OF THE
GLIDING FiIsH

We have three control variables available to manipulate the
gliding fish swimming profile: excess mass my, the position
of the movable mass 7, and the tail angle §. In this section,
we analyze the steady-state spiraling equations with three
control inputs fixed and use the Newton’ method to solve
the equations recursively.

A. Steady-State Spiraling Equations

If control inputs are fixed with nonzero tail angle, we
can treat the influence of the tail on the hydrodynamic
forces and moments as the effects of increased hydrodynamic
angles («, ). From [16], we know that the gliding fish will
perform three-dimension steady spiraling motion, where the
yaw angle v changes at constant rate while the roll angle ¢
and pitch angle 6 are constants. Then RT k is constant since

0 —sinf
RTk=RT| 0 | =| sin¢cosé (13)
1 cos ¢ cos 0
Take time derivative of RT k, we have
wp x (RTk) =0 (14)

, so the angular velocity has only one freedom with w3; in
Oz axis in the inertial frame. Then

wy, = w3;(RTk) (15)
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0f1/0x1 = —masBVepsbuws; + mssacBV spsbws; — moged (30)
Of1/0xs = —mosBVsodchws; — mysacBV chpchuws; (31
Of1/0xs = masfVepcld — mgsacBV spch (32)
0f1/0x4 masBepcws; — mgsacBspclws; —mogsd — pV S(Cpo + C’%a2 + 0%52)cacﬁ

—pVS(CL LB+ Cpd)cash + pVS(Cro + Cfa)sa (33)
Of1)0xs = —macacBVspchus; — pV2SCHacacB +1/2pV2S(Cpo + CHa® + C6%)sach

+1/2pV28(CE LB + Copd)sasB + 1/2pV28CE s+ 1/2pV2S(Cro + Cfa)car (34)
O0f1/0xs = macBVchpchuws; + masasfV spchws; +1/2pV2S(Cpg + CHa* + 0%52)casﬁ

—1/2pV28C8 neasf — 1/2pV2S(Ch LB + C&pd)cach (35)

The translational velocity in the body-fixed frame

vw=Rpw[V 0 0] (16)

There are two important parameters in the spiraling mo-

tion: the turning radius R and the descending speed Ve tical-

By projecting the total velocity into the horizontal plane and
vertical direction, we have

R = Vecos(d —a)/ws;

Vsin(f — )

a7
(18)

V:vertical =

The steady-state spiraling equations are obtained by setting
time derivatives to zero in (2), (3):

O:
0 =

Muy x wp + mogRTk + Fegy
Jwp X wp + Moy, X vp + Tegt
FMyy T X (RTk) + mgrp X (RTk) (20)

19)

From equations (1), (4), (15), (16) and the above steady-
state spiraling equations, we know there are six inde-
pendent states for describing the steady spiral motion:
[0 ¢ wyi V a B ] with [mg r, 6] as the
three control inputs. Expanding equations (2) and (3), then
transforming the original states to the above six independent
states, we can obtain the nonlinear steady-state spiraling
equations as in (21) - (26). Here, we assume the mass matrix
and inertia matrix have the following form:

m1 0 0 Ji 0 0
M = 0 meo 0 J = 0 J2 0
0 0 ms 0 0 JB

B. Newton’s Method for Solving the Nonlinear Steady-State
Spiraling Equations

The steady-state spiraling equations are highly nonlinear
due to the terms involving trigonometric functions and in-
verse trigonometric functions. Given the angle of attack,
the sideslip angle, and the velocity magnitude, recursive
algorithm for a fixed-point problem can be applied to solve
the equations [16]. However, we are more interested in
the steady-state solutions given fixed control inputs. Un-
fortunately, there is no feasible analytical solution and the
convergence condition for the fixed-point problem is not

satisfied either. So we use Newton’s method to solve the
spiraling steady states under fixed control inputs.
Letzx=[60 ¢ ws V a B ] bethe six states that
we want to solve for steady-state spiral gliding equations.
And letw = mg r, & |7 be the three control inputs.
We write the governing equations in compact form here
for convenience

0=f(z,u) = [fi(z,u)ls

Here, f; is the steady-state function of the spiraling motion.
For example, f; is the right hand side of equation (21).
The iteration algorithm for Newton’s method is [24]

27)

Rip1 =& — J @, w) f(@i, ) (28)

Here x; is the ith step estimation for the steady states, and
J(x,u) is the Jocobian matrix of f(x,u)

_of [5le
6x6

J(x,u) = il
j

(29)

Here, the first row elements of the Jocobian matrix are
given in equations (30) - (35) while the others are omitted
for succinct presentation, which can be calcluated simiarly.

IV. MODEL PREDICTION AND EXPERIMENTAL RESULTS
ON THE GLIDING FISH PROTOTYPE

We solve the steady-state spiraling equations using New-
ton’s method for the lab-developed gliding fish prototype.
Spiraling experiments with different control inputs are also
conducted and the results are shown with good match be-
tween the model prediction and experimental results.

A. Solutions to the Steady-State Spiraling Equations for the
Gliding Fish Prototype

The spiraling motion is achieved using our fully untethered
gliding fish prototype. This gliding fish prototype changes
its net buoyancy by pumping water in and out of an inside
tank, and varies its center of gravity via moving the battery
pack using an linear actuator. Tails with different bending
angles can be easily set up for the turning experiments. The
prototype weighs 4 kg and measures 40 cm long with a 0.8 kg
movable battery pack. Such a small size of the gliding fish,
compared to traditional underwater gliders, renders it high

1757



TABLE I
COMPUTED SPIRALING STEADY STATES THROUGH NEWTON’S METHOD.

Fig. 3. Contours of the static pressure with tail angle at 45 °.

maneuverability, like what it presents in spiraling motion
in terms of turning radius. Hydrodynamic coefficients are
determined by CFD simulation as in [17]. Here, we want to
add that the hydrodynamic coefficients regarding the fish tail
are obtained by curve fitting of the coefficients of different
tail angles, which are evaluated by simulating the flow and
pressure distribution using FLUENT®6.2.16 in the CFD-based
water channel experiments (Fig. 3).

Based on the parameters of this prototype, Newton’s itera-
tive formula (III-B) is used to solve the steady-state spiraling
equations. Characteristic parameters for steady spiraling mo-
tion, including the turning radius and descending speed, are
obtained with different inputs as shown in table I. To apply
Newton’s method, the initial values of states for iteration
needs to be set rather than given any arbitrary values. How-
ever, for this spiraling equations, the selection is not strictly
constrained. To get the table, we choose § = —10°,¢ =
—10°,ws; = 0.1rad/s,V = 0.3m/s,a = 0°,8 = 0° as
initial values for iteration, which leads to convergence. From
the calculated results, we can see that a small turning radius
requires a large tail angle, a large displacement of movable
mass, and a small net buoyancy, while a low descending
speed demands a small tail angle, a small displacement of

mo (g) Tp (Cm) 6(0) (0) ¢7 W3, ‘/’ «, IB) (°,°,rad/s,m/s,° ’O) (Vve'rticah R) (m/s,m)
25 0.3 45 (-44.5, -31.0, 0.425, 0.264, -0.914, 4.10) (0.182, 0.450)
25 0.4 45 (-46.8, -36.6, 0.448, 0.267, -1.32, 4.52) (0.190, 0.417)
25 0.5 45 (-48.3, -40.6, 0.464, 0.268, -1.61, 4.87) (0.195, 0.396)
25 0.6 45 (-49.3, -43.8, 0.476, 0.267, -1.84, 5.18) (0.197, 0.380)
25 0.7 45 (-50.2, -46.5, 0.486, 0.267, -2.04, 5.48) (0.211, 0.338)
10 0.5 45 (-70.8, -49.3, 0.589, 0.184, -3.64, 7.36) (0.169, 0.121)
15 0.5 45 (-63.5, -52.7, 0.571, 0.218, -3.30, 6.98) (0.189, 0.190)
20 0.5 45 (-55.5, -47.8, 0.517, 0.247, -2.46, 5.85) (0.197, 0.287)
30 0.5 45 (-42.1, -34.3, 0.423, 0.281, -0.901, 4.24) (0.185, 0.500)
35 0.5 45 (-36.9, -29.3, 0.392, 0.289, -0.306, 3.85) (0.172, 0.591)
40 0.5 45 (-32.3, -25.3, 0.368, 0.293, 0.224, 3.60) (0.157, 0.670)
25 0.5 30 (-37.6, -11.9, 0.235, 0.242, 0.854, 2.19) (0.151, 0.806)
25 0.5 35 (-43.4,-20.7, 0.311, 0.258, 0.0698, 2.87) (0.178, 0.602)
25 0.5 40 (-46.8, -31.2, 0.389, 0.266, -0.761, 3.77) (0.192, 0.474)
25 0.5 50 (-49.2, -48.8, 0.537, 0.264, -2.54, 6.19) (0.192, 0.337)
25 0.5 55 (-51.1, -56.4, 0.615, 0.257, -3.62, 7.86) (0.190, 0.283)
25 0.5 60 (-55.0, -63.8, 0.705, 0.247, -4.95, 10.0) (0.189, 0.225)
=
1abpet
S0
L]
i -
= :
ot
ek )
200
I il
Frmm— ASYS LT 12124 o, Fig. 4. Snap shots of gliding fish spiraling in the experiment tank.

movable mass, and a net buoyancy far away from 25 g.
We utilize this relationship and conduct some experiments,
selecting the control inputs to compensate the influence of the
limitation of the experimental environment. The experimental
results are presented in the next subsection.

B. Experimental Results

With the lab-developed gliding fish prototype, underwater
spiraling experiments are conducted in order to validate
the derived mathematical models and Newton’s recursive
algorithm. Most experiments are conducted in a large water
tank that measures 15-foot long, 10-foot wide, and 4-foot
deep, as shown in Fig. 4. We set the net buoyancy (negatively
buoyant), the linear actuator position and gliding fish tail
angle to fixed values. Then the glider is released on the water
surface and glides into spiraling mode. Cameras are set to
record the videos in both top view and side view. The turning
radius are extracted after video processing. The comparison
between model predictions and experiment results on turning
radius for different tail angles and different excess mass are
shown in Fig. 5 and Fig. 6, respectively.

There are some factors contributing to the measurement
errors. First, for different depth, the scales between real
objects and camera image are different. Here, the average
scale is used in the video processing. A grid board is used
for calibration, captured with the same camera at the mean

1758



—e=— Experimental Data
‘& Model prediction |1

25 30 35 40 45 50 55 60 65

Fig. 5. Spiraling radius with respect to the tail angle, with fixed movable
mass displacement of 0.5 cm and fixed excess mass of 30 g.

—e— Experimental Data
0.1 ‘e Model prediction |4

24 26 28 30 32 34 36
m, (9)

Fig. 6. Spiraling radius with respect to the excess mass , with fixed movable
mass displacement of 0.5 cm and fixed tail angle of 45°.

distance. Second, although the transient is fast from station-
ary status to steady gliding motion due to the damping effect
from the water, there is still some initial transient process,
difficult to completely separate from the steady spiraling
period. Experimental environment with deeper water will ef-
fectively reduce the influence of initial transient, however, the
complexity of experiments setup will be increased as a result.
The environmental disturbances such as currents will also
affect the experimental results. So with these uncertainties,
we consider the match between our experimental results and
the model predictions satisfactory.

V. CONCLUSION

In this paper we investigated a novel spiral motion for
a gliding robotic fish, achieved by gliding with a deflected
tail. Such spirals hold strong promise in water column
sampling. Dynamic model of gliding fish was presented and
steady-state spiraling equations were derived and analyzed.
Newton’s method was used to solve the equations. A gliding
fish prototype was presented, and experiments were carried
out to validate both the mathematical model and the recursive
algorithm. In future work, we will analyze the basins of
attraction for Newton’s method, and instrument the gliding
fish with environmental sensors for a field experiment.
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