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Abstract— Mutual trust is a key factor in human-human
collaboration. Inspired by this social interaction, we propose
to analyze human-agent mutual trust in the collaboration of
human and (semi)autonomous multi-agent systems. Human-
agent mutual trust should be bidirectional and determines the
human’s acceptance and use of autonomous agents as well as
agents’ willingness to take human’s command. It is especially
important when a human collaborates with multiple agents
concurrently. In this paper, we propose time-series human-
agent mutual trust models based on well known results from
human factors engineering. To avoid both “over-trust” and
“under-trust”, we set up dynamic timing models for the multi-
agent scheduling problem and develop necessary and sufficient
conditions to test the schedulability of the human multi-agent
collaborative task. We demonstrate the effectiveness of the
proposed scheduling algorithm using Matlab simulations. It
shows that the proposed algorithm guarantees the effective real-
time scheduling of the human multi-agent collaboration system
while ensuring a proper level of mutual trust.

I. INTRODUCTION

As the labor cost increases and the autonomy technology
advances, the number of human operators per agent has been
reduced to a large extent. In future operations, it is envisioned
that one human operator can work with multiple agents [1].
In this pursuit, building mutual trust between human opera-
tors and (semi)autonomous agents is of particular importance
since the mutual trust is the basis of collaboration, which may
improve task efficiency and reduce risks and errors. Similar
to human-human trust, human-agent mutual trust includes
both human-to-agent trust and agent-to-human trust. On one
hand, if a human operator trusts agents in a task, he/she will
delegate the task to these agents. On the other hand, if an
agent trusts a human operator, that is, the agent believes in
the commands from the human operator, it will finish the
task based on these input commands.

Human-to-agent trust is a significant factor to guarantee
successful human-agent collaboration (HAC). The recent
meta-analysis [2] studies the factors involved in trust for
human-robot interaction (HRI), which includes robot-related,
human-related, and environmental-related factors. In [3],
Freedy et al. study the critical performance attributes of
trust in HRI and develop a collaborative performance model.
In [4], Yanco and Desai investigate the HRI involved in
remote robot teleoperation (RRT) and summarize five cat-
egories of trust models. Apart from the above qualitative
works, the dynamic aspect of trust and different operating
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conditions of an automated system are studied in [5]. Itoh
and Tanaka propose a mathematical model of trust based on
the expectation of humans from automation, dependability of
the automation, and predictability of automation behaviour.
Most of the existing literature has been focused on the uni-
lateral human-to-agent trust. Nevertheless, since there exists
interaction in the human-agent collaboration system, trust
between human and agents should be bilateral, including
both human-to-agent trust and agent-to-human trust. Here,
agent-to-human trust is similar to the human-to-agent trust,
which inversely depends on the human performance. Based
on different levels of agent-to-human trust, an agent will se-
lect different modes, such as “DECLINE” or “ACCEPT”, to
respond to human commands [6]. Inspired by the time-series
trust model proposed in [6] and the theoretical framework for
trust in [2], in this paper, we propose time-series dynamic
models for the mutual trust between the human operator and
(semi)autonomous agents.

A human operator needs to share attention to each agent
in a multi-agent system. This case is analogous to the classic
research topic about task allocation in real-time scheduling.
In this case, it is necessary to develop a dynamic scheduling
algorithm so that human can allocate his/her attention to
each agent in real time. In the literature [7], there are three
categories of classical scheduling algorithms: fixed priority
scheduling, dynamic priority scheduling, and mixed priority
scheduling. This paper [7] also discusses three corresponding
conditions for the schedulability test of these algorithms.
However, these results are not applicable in our dynamic
systems where the ultimate goal is not just to meet deadlines
but to avoid both “over-trust” and “under-trust”. Therefore,
in [1], Wang et al. introduce a novel scheduling algorithm
called “highest-trust-first” scheduling, which can guarantee
effective real-time scheduling of manual and autonomous
control of agents. In [8]–[10], Shi et al. propose a dy-
namic timing model and necessary and sufficient conditions
for schedulability test of dynamic systems. In this paper,
based on the bilateral trust dynamic models and extending
the “highest-trust-first” scheduling, we propose a rigorous
schedulability test algorithm using the dynamic timing model
to avoid both “over-trust” and “under-trust”.

The remainder of the paper is organized as follows. Sec-
tion II introduces the mutual trust models and the definition
of schedulability. The dynamic timing model is introduced in
Section III. Section IV gives the schedulability test algorithm
based on the mutual trust and dynamic timing models. We
provide a set of Matlab simulation results in Section V and
conclude the paper in Section VI.
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II. PROBLEM SETUP

A. Trust Model

In this section, we start from the case where one human
operator collaborates with one agent. Here, we introduce two
dynamic trust models: human-to-agent trust model TH−A,
and agent-to-human trust model TA−H , respectively.

It has been shown that human-to-agent trust is affected
by three broad categories of influential variables, which are
agent performance, human performance, and environmental
factors [11]. It is further pointed out in the meta-analysis [2]
that agent performance is strongly related to trust level,
environmental factors are moderately associated with trust,
and human performance has the least relationship with
trust evolution. Therefore, combining the qualitative trust
model [11] and time-series trust model proposed in [6], we
have the following human-to-agent trust model:

TH−A(k) = A1TH−A(k − 1) +B1PA(k)

−B2PA(k − 1) +D1FA(k)−D2FA(k − 1),
(1)

where k denotes the discrete time step, PA(k) denotes the
agent performance, FA(k) denotes the agent fault rate under
the autonomous/manual control mode, and A1, B1, B2, D1,
and D2 are constant coefficients whose values depend on
the human operator, the agent, and the collaborative task. As
the above equation shows, the current trust level TH−A(k)
is determined by the prior trust level TH−A(k − 1), change
of agent performance, and change of agent fault rate.

Next, we consider the agent-to-human trust model
TA−H(k). Similar to the human-to-agent trust, TA−H(k) will
depend on the change of performance PH and fault rate FH
of the human partner. Analogous to Eq. (1), we propose the
following agent-to-human trust model:

TA−H(k) = A2TA−H(k − 1) + C1PH(k)

−C2PH(k − 1) + E1FH(k)− E2FH(k − 1),
(2)

where A2, Ci, Ei, i = 1, 2 are real constant coefficients. The
human-agent mutual trust model applies to each agent in the
multi-agent system with varying coefficients specific to agent
capabilities.

B. Trust and Automation Use

In this paper, we assume that both TH−A(k) and TA−H(k)
must fall within two desired regions [12] denoted as,
TH−A ∈ [TH−A,l, TH−A,u] and TA−H ∈ [TA−H,l, TA−H,u]
for k ≥ 0. For the human-to-agent trust level TH−A(k),
if its value exceeds the corresponding upper limit, i.e.,
TH−A(k) ≥ TH−A,u, it indicates the human operator has too
much trust on the autonomous operation of the agents. To
address this issue, the human operator should start to control
the agents manually. On the other hand, if the human-to-
agent trust level TH−A(k) goes below the lower limit, i.e.,
TH−A(k) ≤ TH−A,l, it means the human operator has too
little trust on the autonomous operation of the agents and put
too much manual control. In this case, the human operator

should allow the autonomous operation rather than control
them manually.

Similarly, for the agent-to-human trust level TA−H(k), if
TA−H(k) ≥ TA−H,u, this indicates that the agent relies too
much on the human operator’s manual control. In this case,
the human operator should stop the manual control of agents
but let them operate autonomously. On the other hand, if the
agent-to-human trust level TA−H(k) ≤ TA−H,l, the agent
has too little trust on the human operator’s manual control but
operate autonomously by themselves. In this case, the human
operator should start manual control of agents to increase
their trust in the human operators.

C. Schedulability Definition

Consider the case where a human operator collaborates
with N (semi)autonomous agents and denote an agent as
{A1, ..., AN}. Based on the above explanation of trust re-
lation, we define the schedulability of a human multi-agent
collaborative team in terms of mutual trust as follows. We use
the subscript n to represent each agent An in the following
notation.

Definition 2.1: Consider an arbitrary time period starting
from ka and ending at kb, denoted as k ∈ [ka, kb]. For
any agent An (1 ≤ n ≤ N ) that is collaborating with
a human operator, if both the human-to-agent and agent-
to-human trust level fall within the limits of the desired
trust regions, i.e., Tn,H−A(k) ∈ [Tn,H−A,l, Tn,H−A,u] and
Tn,A−H(k) ∈ [Tn,A−H,l, Tn,A−H,u], the human multi-agent
collaboration system is said to be schedulable within [ka, kb].

In order to save computational time, we develop necessary
and sufficient conditions to check the schedulability of such a
given human multi-agent system within a sub-interval, shown
in Section III.

D. Agent Performance Model

We consider two modes when a human collaborates with
agents: the autonomous and the manual mode, with different
performance models given by the following two different
equations [13]

Pn,A(k) =


(1− kn,A)Pn,A(k − 1) + kn,APn,A,min,

(autonomous mode)
(1− kn,H)Pn,A(k − 1) + kn,HPn,A,max,

(manual mode)

(3)

where Pn,A,max, Pn,A,min ∈ [0, 1] stand for the maximum and
minimum performance of the agent An, and kn,A, kn,H ∈
(0, 1) are the performance coefficients for autonomous mode
and manual mode, respectively. The agent performance mod-
el (3) guarantees that Pn,A of each agent An is bounded
between [Pn,A,min, Pn,A,max], given that their initial perfor-
mance falls within [Pn,A,min, Pn,A,max].

E. Human Performance Model

The Yerkes-Dodson law [14] describes human perfor-
mance as an empirical model with respect to human arousal
and task difficulty. In our paper, human performance means
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the capability and efficiency of the human operator collabo-
rating with an agent. We represent the following performance
model, as [15]

PH(k)=(PH,max−PH,min)

(
r(k)

β

)β(
1− r(k)

1− β

)1−β

+PH,min, (4)

where β ∈ (0, 1) represents the difficulty of a task for a
human (a smaller value of β represents a more difficult
task [16]), r(k) represents the utilization of which the
definition and model can be found in [1], [17], and PH,max

and PH,min represent the maximum and minimum human
performance value, respectively. Note that the human per-
formance model (4) guarantees that PH is bounded between
[PH,min, PH,max].

The utilization ratio r(k) is determined by the control
modes of all agents. Note that the utilization r(k) increases
in the manual mode (un(k) = 1) and decreases in the
autonomous mode (un(k) = 0). Since the human operator
can only collaborate with one agent at a time, the utilization
ratio r(k) is bounded between 0 and 1.

III. DYNAMIC TIMING MODEL

As we have introduced in Section I, there are three
categories of scheduling algorithms in classical real-time
scheduling and each of them has conditions for schedulability
test. However, these algorithms have some constraints which
make them not directly applicable in our problem. First, the
fixed priority scheduling algorithms, such as rate-monotonic
scheduling (R.M.S.) [7], can only be used in systems where
the scheduling parameters are constant over each period,
which is not the case for our dynamic systems. Second,
the dynamic priority scheduling algorithms, such as earliest
deadline first (E.D.F.) [7], are also not applicable here, as
their goal is to guarantee the tasks to finish before deadline
while our goal is to maintain the trust level within the desired
region. Because of the new requirements in our systems,
more conditions need to be considered, such as the human
performance and the desired trust region, which increases
the complexity of the schedulability test. Finally, the mixed
scheduling algorithms that combine the R.M.S. and deadline
driven dynamic scheduling algorithms still do not address
the above mentioned limitations and hence do not apply to
our problem either.

In this paper, we develop a new scheduling algorithm that
can allocate human attention to each agent so that the mutual
trust level of each human-agent pair falls within the desired
trust region. We define two parameters, collaboration time
In(k) and period Ln for each agent. The choice of In(k) will
dynamically change according to the bilateral trust levels,
i.e., Tn,H−A and Tn,A−H within the previous period Ln.
Coordinating a set of agents {A1, · · · , An} corresponds to
executing a set of tasks Γ = {τ1, ... , τN} on a single core
processorBased on the above analysis, we apply the highest-
trust-first scheduling method in the multi-agent systems [7],
[8]. As we discussed in the previous section, we cannot use
Definition 2.1 to test if a given human multi-agent system

is schedulable. Instead, we develop necessary and sufficient
conditions to achieve this goal by adopting the following
dynamic timing model.

To describe the current status of agents at any time step
k and build up the dynamic timing model, we define a state
vector Z(k) = [Q(k), S(k), O(k)] as follows.

Definition 3.1: The dynamic arrival time is defined as
Q(k) = [q1(k), ..., qN (k)], where qn(k) denotes how long
after time step, k, the next collaboration request from An
will launch.

Definition 3.2: The residue time is defined as S(k) =
[s1(k), ..., sN (k)], where sn(k) denotes the remaining col-
laboration time required after time step, k, by agent An.

Definition 3.3: The dynamic response time is defined as
O(k) = [o1(k), ..., oN (k)]. Here, we need to define on(k) for
two situations: (1) When the human still collaborates with
the agent An, on(k) denotes the length of time from the
initial request of An to the current time step, k; (2) When
the collaboration between the human and the agent An is
completed, on(k) denotes the length of time from the initial
request of An to the completion time.

Based on Definitions 3.1-3.3, we propose the evolution
model of Z(k) within any sub-interval [kw, kw+1]. The
evolution of the dynamic arrival time Q(k) is given as
follows: qn(kw) = qn(kw − 1)− 1, if qn(kw − 1) > 1
qn(kw) = Ln, if qn(kw − 1) = 1
qn(kw + εw) = qn(kw)− εw, εw ∈ [1, Pw − 1]

, (5)

where εw is an integer representing time step. The initial
condition during the whole time interval is set as qn(ka) =
Ln. Pw is the length of each sub-interval [8].

The evolution of the dynamic residue time S(k) is given
as follows:

sn(kw) = max{0, sn(kw − 1)− 1},
if qn(kw − 1) > 1 & Pw 6= 1

sn(kw) = max{0, sn(kw − 1)−
max{0, 1−

∑
HP

ui(kw − 1)}},

if qn(kw − 1) > 1 & Pw = 1
sn(kw) = In(kw), if qn(kw − 1) = 1
sn(kw + εw) = max{0, sn(kw)−

max{0, εw −
∑
HP

kw+εw∑
k=kw

ui(k)}},

otherwise

, (6)

where the term HP represents a set containing all the agents
which have higher priority than An. The initial condition for
S(k) is sn(ka) = In(ka). In addition, if qn(kw−1) = 1 and
sn(kw − 1) > 1, the system will be unschedulable as the
collaboration time for one agent will exceed its period.

The evolution of the dynamic response time O(k) is given
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as follows:

on(kw) = on(kw − 1),
if qn(kw − 1) > 1 & sn(kw − 1) = 0

on(kw) = on(kw − 1) + 1,
if qn(kw − 1) > 1 & sn(kw − 1) > 0

on(kw) = 0, if qn(kw − 1) = 1
on(kw + εw) = on(kw), if sn(kw) = 0
on(kw + εw) = on(kw) + min{sn(kw)+∑

HP

kw+εw∑
k=kw

ui(k), εw}, if sn(kw) 6= 0

(7)

The initial condition is on(ka) = 0.
Based on the evolutions of state variables and Defini-

tion 2.1, the schedulability of the human-agent collaboration
system can now be formally defined as follows.

Definition 3.4: A human multi-agent collaboration system
is schedulable within time interval [ka, kb] if and only if the
system is schedulable within each sub-interval [kw, kw+1] ∈
[ka, kb]. The system is schedulable within a sub-interval
[kw, kw+1] if and only if each individual agent An is
schedulable within [kw, kw+1].

The following theorems state the necessary and sufficient
conditions for the schedulability of An within a sub-interval
[kw, kw+1].

Theorem 3.1: (Necessary and Sufficient Condition) An
agent An is schedulable within [kw, kw+1] if and only if
it satisfies one of the following conditions:

1.on(kw+1 − 1) = Ln − 1 and sn(kw+1 − 1) = 0;

2.on(kw+1 − 1) < Ln − 1.

Note that the above necessary and sufficient conditions are
conservative. The following theorem gives a less conservative
sufficient condition.

Theorem 3.2: (Sufficient Condition) If an agent An is
schedulable, it will satisfy one of the following conditions
within [kw, kw+1]:

1.on(kw+1 − 1) = Ln − 1 and sn(kw+1 − 1) = 0 or 1;

2.on(kw+1 − 1) < Ln − 1.

The difference between Theorem 3.1 and 3.2 is the con-
dition, sn(kw+1 − 1) = 1. If we use the necessary and
sufficient conditions in Theorem 3.1, some time steps will
lead to unschedulability. Hence, Theorem 3.2 as a necessary
condition can be viewed as a supplement to Thereom 3.1.
Readers can find the proof and more detailed discussions
about the conservative property of these given conditions
in [8].

IV. SCHEDULABILITY TEST ALGORITHM

We can now perform the dynamic schedulability test
over the time interval [ka, kb] using an algorithm based on
Theorem 3.1. This algorithm is composed of 3 parts, shown
below. It iteratively checks the schedulability of each agent,
An, as follows.

We use the variable dsn to represent the schedulability

result with dsn = 1 representing schedulable and dsn = 0
otherwise. The set DSn contains the schedulability result
during the time interval [ka, kb]. The term en,H−A(k +
1) = Tn,H−A,u − Tn,H−A(k) represents the deviation of
the current human-agent trust level away with the upper
limit. We define en,A−H(k + 1) = Tn,A−H,u − Tn,A−H(k)
in a similar fashion. The agent with the minimum error,
i.e. closest to the “over-trust” situation, will be chosen to
collaborate with. Furthermore, we update the collaboration
time of each agent In(k) by calculating the maximum and
minimum mutual trust level. When the trust becomes too
high, we increase the amount of collaboration time, as shown
in Line 31-36. Note that the value of In(k) cannot go beyond
Ln. On the other hand, when the mutual trust becomes too
low, we decrease the amount of collaboration time, as shown
in Line 37-42. Note that the value of In(k) cannot be smaller
than zero. Note that δ1, δ2, δ3, δ4 > 0 are arbitrarily small
values guaranteeing that In(k) is adjusted before the mutual
trust level goes beyond upper and lower limit.

V. SIMULATION RESULTS

A. Simulation

We simulate the scenario when a human operator collab-
orates with three heterogeneous agents: {A1, A2, A3}. The
agent performance can be updated by Eq. (3) and the choice
of parameters for each agent is listed in Table I. Each agent
has its initial performance as [P1,A(0), P2,A(0), P3,A(0)] =
[0.08, 0.15, 0.11]. The human operator has his/her perfor-
mance as described by Eq. (4). We assume that the task
difficulty for the human operator is β = 0.8 and the
maximum human performance, PH,max, and minimum hu-
man performance, PH,min are 1 and 0, respectively. The
initial human performance is PH(0) = 0.25 and the initial
utilization ratio is r(0) = 0.1.

The mutual trust level between the human operator and
each agent An follows the dynamic models discussed in
Eqs. (1) and (2). The constant coefficients in these equations
are chosen as An,1 = 1, An,2 = 1, Bn,1 = −0.5, Bn,2 =
0.5, Cn,1 = −0.5, Cn,2 = 0.5, Dn,1 = 0.005, Dn,2 = 0.005,
En,1 = 0.005, En,2 = 0.005 and the fault rates follow
the standard normal distribution N(0, 1). The initial mutual
trust value between the human operator and three agents
are assumed to be [TH−A,1(0), TH−A,2(0), TH−A,3(0)] =
[1.93, 1.9, 1.98] and [TA−H,1(0), TA−H,2(0), TA−H,3(0)] =
[1.93, 1.9, 1.98]. The goal of the human operator is to make
sure that the trust level Tn(k) = [Tn,H−A(k);Tn,A−H(k)]
with each agent An stays within a desired trust region as time
propagates. In this simulation, we choose the desired trust re-
gions with the lower bounds T1,l = 1.45, T2,l = 1.35, T3,l =
1.25], the upper bounds T1,u = 2.15, T2,u = 2.35, T3,u =

2.25, and the ideal expert level Tn,d =
Tn,u+Tn,l

2 for each
agent. Note that we set the same bound for both human-to-
agent and agent-to-human trust regions.

As discussed in Section III, we choose the initial param-
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Algorithm 1: Main Algorithm

Data: r(ka), PH(ka), {un(ka)}Nn=1, {Ln, In(ka)}Nn=1,
{Pn,A(ka), Tn,H−A(ka), Tn,A−H(ka)}Nn=1,
{qn(ka), sn(ka), on(ka)}Nn=1

Result: {DSn}Nn=1

1 for each An ∈ Γ do
2 DSn = [ ];
3 dsn = 1;

4 kw = ka;
5 Algorithm2;
6 while kw < kb do
7 for each An do

/* Update Mutual Trust, Pn,A, Pn,H (1)-(4) */
/* Update State Variables (5)-(7)*/

8 en,H−A(k + 1) = Tn,H−A,u − Tn,H−A(k);
9 en,A−H(k + 1) = Tn,A−H − Tn,A−H,l(k);

10 G = [ ];
11 if sn(kw + εw) > 0 then
12 G = [G, An ];

13 if G is not empty then
14 i = minAn∈G([en,H−A(k+ 1), en,A−H(k+ 1)]);
15 if n == i then
16 un(k + 1) = 1;

17 else if n 6= i then
18 un(k + 1) = 0;

19 for each An do
20 Tn,H−A,max = maxk−Ln≤τ≤k Tn,H−A(τ);
21 Tn,A−H,max = maxk−Ln≤τ≤k Tn,A−H(τ);
22 Tn,H−A,min = mink−Ln≤τ≤k Tn,H−A(τ);
23 Tn,A−H,min = mink−Ln≤τ≤k Tn,A−H(τ);
24 if Tn,H−A,max > Tn,H−A,u − δ1 and

Tn,H−A,min > Tn,H−A,d then
25 φ1 = 1 ;

26 if Tn,A−H,min < Tn,A−H,l + δ2 and
Tn,A−H,max < Tn,A−H,d then

27 φ2 = 1 ;

28 if φ1 ∪ φ2 = 1 then
29 In(k) = min{In(k) + 1, Ln} ;

30 if Tn,H−A,min < Tn,H−A,l + δ3 and
Tn,H−A,max < Tn,H−A,d then

31 φ3 = 1 ;

32 if Tn,A−H,max > Tn,A−H,u − δ4 and
Tn,A−H,min > Tn,A−H,d then

33 φ4 = 1 ;

34 if φ3 ∪ φ4 = 1 then
35 In(k) = max{In(k)− 1, 0} ;

36 Algorithm 3;

37 w=w+1;
38 return {DSn}Nn=1 ;

Algorithm 2: Determination of the fixed priority window

Data: r(ka), PH(ka), {un(ka)}Nn=1, {Ln, In(ka)}Nn=1,
{Pn,A(ka), Tn,H−A(ka), Tn,A−H(ka)}Nn=1,
{qn(ka), sn(ka), on(ka)}Nn=1

Result: Pw
1 while kw < kb do
2 for each An do
3 if qn(kw − 1) == 1 then
4 qn(kw) = Ln;

5 else
6 qn(kw) = qn(kw − 1)− 1;

7 Pw = min{q1(kw), ..., qN (kw), kb − kw};
8 kw+1 = kw + Pw;

9 return Pw ;

Algorithm 3: Schedulability test

Data: Ln, {qn(k), sn(k), on(k)}Nn=1

Result: {DSn}Nn=1

1 if qn(kw+1 − 1) == 1 then
2 if on(kw+1 − 1) < Ln − 1 then
3 dsn(k) = 1;

4 else if on(kw+1 − 1) = Ln − 1 and
sn(kw+1 − 1) = 0 then

5 dsn(k) = 1;

6 else
7 dsn(k) = 0;

8 else
9 dsn(k) = dsn(k − 1);

10 DSn = {DSn, dsn(k)};
11 return {DSn}Nn=1 ;

eters in the periodic strategy as

[I1, L1] = [2, 10]s [I2, L2] = [3, 10]s [I3, L3] = [4, 10]s
(8)

where each pair [In, Ln] denotes that the human operator
must collaborate with agent An for In seconds within every
Ln seconds. Note that the value of In(k) will dynami-
cally change according to Algorithm 1. If the trust level
TH−A,n(k) and TA−H,n(k) are too close to the lower bound,
i.e. the “under-trust” situation, the human operator will
collaborate less with this agent and thus the value of In(k)
will decrease. On the other hand, if the mutual trust level is
too close to the upper bound, the value of In(k) will increase.

B. Results and Discussions

Fig. 1 shows the evolution of the human-to-agent trust
level and agent-to-human trust level for all three agents
within the time interval [1, 200]. The green lines represent
the upper bound and lower bound of the desired trust regions.
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TABLE I: Coefficients in Agent Performance Model

kR kH PA,min PA,max

A1 0.17 0.25 0.02 0.85
A2 0.15 0.25 0.05 0.96
A3 0.25 0.17 0.04 0.9

The black dashed lines represent the ideal expert level. The
blue lines represent the human-to-agent trust level and the
pink dotted lines represent the agent-to-human trust level.
The red lines represent the (de)activation of manual control.
From the figures, we can observe that the human operator
can interact with one agent at a time. Here, “1” means
that the human operator is collaborating with the agent; and
“0” means no collaboration. Finally, the brown dotted lines
represent the schedulability result, where “1” means that the
system is schedulable and “0” means NOT schedulable. The
mutual trust level in each human-agent pair is consistently
bounded within desired regions and the human-agent systems
are always schedulable, which indicates that the proposed
scheduling algorithm could guarantee the ultimate goal.
Besides, the plenty amount of time between one control
mode and another suggests that the human has enough time
to respond, decide and take an action. Hence, this scheduling
scheme can be adopted into the more practical human-in-the-
loop applications.
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(a) T1(k) between Human and Agent 1
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(b) T2(k) between Human and Agent 2
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(c) T3(k) between Human and Agent 3

Fig. 1: Mutual trust within the time interval [1, 200].

VI. CONCLUSION

In this paper, we propose a human-to-agent trust model
based on well-known qualitative results in human factors and
a novel agent-to-human trust model based on human-human
collaboration. We also develop a dynamic timing model to
describe the status of different state variables, and use it to
derive necessary and sufficient conditions for schedulability
test. Furthermore, we develop a schedulability test algorithm
using the dynamic timing model to avoid both over- and
under-trust. The simulation results show that our scheduling
algorithm can guarantee the mutual trust level in the desired
trust regions.
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