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Abstract

Standard classification algorithms aim to minimize the probability of making an
incorrect classification. In many important applications, however, some kinds of errors
are more important than others. In this report we review cost-sensitive extensions of
standard support vector machines (SVMs). In particular, we describe cost-sensitive
extensions of the C-SVM and the ν-SVM, which we denote the 2C-SVM and 2ν-SVM
respectively. The C-SVM and the ν-SVM are known to be closely related, and we
prove that the 2C-SVM and 2ν-SVM share a similar relationship. This demonstrates
that the 2C-SVM and 2ν-SVM explore the same space of possible classifiers, and gives
us a clear understanding of the parameter space for both versions.

1 Introduction

In a standard classification problem the goal is to minimize the probability of making an
error. In many important applications, however, some kinds of errors are more important
than others. In tumor classification, for example, the impact of mistakenly classifying a
benign tumor as malignant is much less than that of the opposite mistake. However, nearly
all work on classification to date optimizes a “probability of error” criterion. An exception is
a recent body of work known as “cost-sensitive classification” that assigns costs to different
errors and attempts to minimize the expected misclassification cost.

Support vector machines (SVMs) can be extended to the cost-sensitive setting by in-
troducing an additional parameter that penalizes the errors asymmetrically. This approach
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has been taken by several authors to adapt the C-SVM to be cost-sensitive [1–4], but this
strategy also applies to an alternative SVM formulation, the ν-SVM [5]. We refer to the
cost-sensitive extensions as the 2C-SVM and 2ν-SVM respectively. The primary motivation
for these methods is to address the problem described above, but they can also be applied
to deal with the difficulties that arise when the class frequencies in the training data do
not accurately reflect the true prior probabilities of the classes. Additionally, cost-sensitive
classifiers are useful in the Neyman-Pearson classification context [6]. In all of these settings,
a critical problem is that of parameter selection: the parameter settings that would result in
the “best” performance are not known, and so the user must use the training data to estimate
appropriate values for the parameters. Thus, it is vital that we understand how varying the
parameters of either the 2C-SVM or the 2ν-SVM will impact the resulting classifier.

In Section 2 we briefly review SVMs. In Section 3 we then introduce the cost-sensitive
extensions of the C-SVM and ν-SVM. The ν-SVM has some properties that make it more
attractive than the C-SVM. This is also the case for the 2ν-SVM. We describe these prop-
erties in Section 4. Among the contributions of this paper is a proof that the 2ν-SVM is
feasible if and only if the parameters lie in a specified range. In Section 5 we show the 2C-
SVM and the 2ν-SVM are closely related. Specifically, we generalize a result of [7] and show
that under certain technical conditions, any optimal solution for one of the cost-sensitive
SVM formulations is an optimal solution of the other with the right parameter settings.
Using these results, we then prove a theorem that precisely relates the parameter spaces and
resulting classifiers of the 2C-SVM and the 2ν-SVM.

2 Review of Support Vector Machines

Support vector machines (SVMs) are among the more effective methods for classification.
For a more thorough review see [8–10]. In the following, assume that we have access to
training data (xi, yi), i = 1, . . . , n where xi ∈ R

d is a d-dimensional feature vector and
yi ∈ {+1,−1} indicates the class of xi.

Conceptually, the support vector classifier is constructed in a two step process. In the
first step, the xi are transformed via a mapping Φ : R

d → H where H is a high (possibly
infinite) dimensional Hilbert space. The intuition is that the two classes are more easily
separated in H than in R

d. For algorithmic reasons, Φ must be chosen so that the kernel
operator k(x,x′) = 〈Φ(x), Φ(x′)〉H is positive definite. This allows us to compute inner
products in H without explicitly evaluating Φ.

In the second step, a hyperplane is determined in the induced feature space according
to the max-margin principle. In the case where the two classes can be separated by a
hyperplane, the SVM finds the hyperplane that maximizes the distance between the decision
boundary and the closest point to the boundary, known as the margin. When the classes
cannot be separated by a hyperplane, the constraints are relaxed through the introduction
of slack variables ξi. If ξi > 0, this means that the corresponding xi lies inside the margin
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and is called a margin error. If w ∈ H and b ∈ R are the normal vector and affine shift
defining the max-margin hyperplane, then the support vector classifier is given by f

w,b(x) =
sgn(〈w, Φ(x)〉H + b). The offset parameter b is often called the bias.

There are two different formulations of the SVM. The original SVM [11], which we shall
call the C-SVM, can be formulated as the following quadratic program:

(PC) min
w,b,ξ

1

2
‖w‖2 + C

n
∑

i=1

ξi

subject to yi(k(w,xi) + b) ≥ 1 − ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

where C ≥ 0 is a parameter that controls the tradeoff between minimizing the margin errors
and maximizing the margin.

For computational reasons, it is often easier to solve (PC) by solving the equivalent dual
problem:

(DC) min
α

1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj) −
n

∑

i=1

αi

subject to 0 ≤ αi ≤ C for i = 1, . . . , n
n

∑

i=1

αiyi = 0.

This formulation is derived by forming the Lagrangian (α is a Lagrange multiplier). The
primal and the dual are related through w =

∑n

i=1
αiyiΦ(xi). We will often have that αi = 0

for most xi. We call the xi for which αi 6= 0 the support vectors.
An alternative (but equivalent) formulation of the C-SVM is the ν-SVM [12], which

replaces C with a different parameter ν ∈ [0, 1] that serves as an upper bound on the
fraction of margin errors and a lower bound on the fraction of support vectors. The ν-SVM
has the primal formulation

(Pν) min
w,b,ξ,ρ

1

2
‖w‖2 − νρ +

1

n

n
∑

i=1

ξi

subject to yi(k(w,xi) + b) ≥ ρ − ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0
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and dual formulation

(Dν) min
α

1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤
1

n
for i = 1, . . . , n

n
∑

i=1

αiyi = 0,
n

∑

i=1

αi ≥ ν.

3 Cost-Sensitive SVMs

The above formulations implicitly penalize errors in both classes equally. However, as de-
scribed in the Introduction, there may be different costs associated with the two different
kinds of errors. To address this issue, cost-sensitive extensions of both the C-SVM and the
ν-SVM have been proposed, which we shall denote the 2C-SVM and the 2ν-SVM respec-
tively.

First we will consider the 2C-SVM proposed in [1]. Let I+ = {i : yi = +1} and I− = {i :
yi = −1}. The 2C-SVM has primal

(P2C) min
w,b,ξ

1

2
‖w‖2 + Cγ

∑

i∈I+

ξi + C(1 − γ)
∑

i∈I−

ξi

subject to yi(k(w,xi) + b) ≥ 1 − ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0

and dual

(D2C) min
α

1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj) −
n

∑

i=1

αi

subject to 0 ≤ αi ≤ Cγ for i ∈ I+

0 ≤ αi ≤ C(1 − γ) for i ∈ I−
n

∑

i=1

αiyi = 0
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where C > 0 and γ ∈ [0, 1]. Similarly, [5] proposed the 2ν-SVM as a cost-sensitive extension
of the ν-SVM. The 2ν-SVM has primal

(P2ν) min
w,b,ξ,ρ

1

2
‖w‖2 − νρ +

γ

n

∑

i∈I+

ξi +
1 − γ

n

∑

i∈I−

ξi

subject to yi(k(w,xi) + b) ≥ ρ − ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0

and dual

(D2ν) min
α

1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤
γ

n
for i ∈ I+

0 ≤ αi ≤
1 − γ

n
for i ∈ I−

n
∑

i=1

αiyi = 0,
n

∑

i=1

αi ≥ ν

where ν ∈ [0, 1

2
] and γ ∈ [0, 1].

4 Properties of the 2ν-SVM

Before illustrating the relationship between the 2C-SVM and the 2ν-SVM, we establish some
of the basic properties of the 2ν-SVM.

Proposition 1. Fix γ ∈ [0, 1] and let n+ = |I+|, n− = |I−|. Then (D2ν) is feasible if and
only if ν ≤ νmax ≤ 1

2
, where

νmax =
2 min(γn+, (1 − γ)n−)

n
.

Proof. First, assume that ν ≤ νmax. Then we can construct an α that satisfies the constraints
of (D2ν). Specifically, let

αi =
νmax

2n+

=
min(γ, (1 − γ)n−/n+)

n
≤

γ

n
for i ∈ I+

5



and

αi =
νmax

2n−

=
min(γn+/n−, 1 − γ)

n
≤

1 − γ

n
for i ∈ I−.

Then
∑

i∈I+
αi +

∑

i∈I+
αi = νmax ≥ ν and

∑n

i=1
αiyi = 0. Thus we have a feasible solution,

and so (D2ν) is feasible.
Now assume that (D2ν) is feasible. Then there exists an α such that

∑n

i=1
αi ≥ ν

and
∑

i∈I+
αi =

∑

i∈I−
αi. Combining this we get ν ≤ 2

∑

i∈I+
αi. Since we also have

0 ≤ αi ≤ γ/n for i ∈ I+, we see that ν ≤ 2
∑

i∈I+
αi ≤ 2γn+/n, and therefore, ν ≤ 2γn+/n.

Similarly, ν ≤ 2(1 − γ)n−/n. Thus ν ≤ νmax.
Finally, note that νmax is maximized when γn+ = (1−γ)n−, which occurs when γ = n−/n,

and thus

νmax ≤
2n−n+

n2
≤

1

2

Remark. We can use this result to show that (D2ν) is feasible for fixed ν ∈ [0, νmax] if and
only if

νn

2n+

≤ γ ≤ 1 −
νn

2n−

Proposition 2. Fix γ ∈ [0, 1] and ν ∈ [0, νmax]. There is at least one optimal solution of
(D2ν) that satisfies

∑n

i=1
αi = ν. In addition, if the optimal objective value of (D2ν) is not

zero, all optimal solutions of (D2ν) satisfy
∑n

i=1
αi = ν.

Proof. This proposition was proved in [13] for (Dν). The proof relies only on the form of the
objective function of (Dν), which is identical to that of (D2ν). Thus, we omit it for the sake
of brevity and refer the reader to [13].

Remark. The cost-sensitive extension of the 2ν-SVM proposed in [5] is parameterized in a
different manner than (D2ν). Specifically, instead of parameters ν and γ, (D2ν) is formulated
using ν+ and ν−, where

ν =
2ν+ν−n+n−

(ν+n+ + ν−n−)n
, γ =

ν−n−

ν+n+ + ν−n−

=
νn

2ν+n+

.

or equivalently

ν+ =
νn

2γn+

, ν− =
νn

2(1 − γ)n−

.

This parametrization has the benefit that ν+ and ν− have a more intuitive meaning illustrated
by the following result.

Proposition 3. Suppose that the optimal objective value of (D2ν) is not zero. Then for the
optimal solution of (D2ν):

1. ν+ is an upper bound on the fraction of margin errors from class +1.
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2. ν− is an upper bound on the fraction of margin errors from class −1.

3. ν+ is a lower bound on the fraction of support vectors from class +1.

4. ν− is a lower bound on the fraction of support vectors from class −1.

Proof. See [5] for the proof.

Proposition 4. (D2ν) is feasible if and only if ν+ ≤ 1 and ν− ≤ 1.

Proof. From Proposition 1 we have that (D2ν) is feasible if and only if

ν ≤
2 min(γn+, (1 − γ)n−)

n
.

Thus, (D2ν) is feasible if and only if

2ν+ν−n+n−

(ν+n+ + ν−n−)n
≤

2 min
(

ν−n+n−

ν+n++ν−n−

, ν+n+n−

ν+n++ν−n−

)

n
⇐⇒ ν+ν− ≤ min(ν−, ν+)

or equivalently, ν+ ≤ 1 and ν− ≤ 1.

5 Relationship between the 2ν-SVM and 2C-SVM

The following theorems illustrate the relationship between (D2C) and (D2ν). The first shows
how solutions of (D2C) are related to solutions of (D2ν), and the second shows how solutions
of (D2ν) are related to solutions of (D2C). The third theorem, our main result, shows that
increasing (decreasing) ν is similar to decreasing (increasing) C. The proofs of these theorems
can be found in Section 7.

Theorem 1. Fix γ ∈ [0, 1]. For each C > 0, let α∗ be any optimal solution of (D2C) and
set ν =

∑n

i=1
α∗

i /(Cn). Then any α is an optimal solution of (D2C) if and only if α/(Cn)
is an optimal solution of (D2ν).

Theorem 2. Fix γ ∈ [0, 1]. Assume (D2ν), 0 < ν ≤ νmax, has a nonzero optimal objective
value, then ρ > 0. Set C = 1/(ρn). Then any α is an optimal solution of (D2C) if and only
if α/(Cn) is an optimal solution of (D2ν).

Theorem 3. Fix γ ∈ [0, 1] and let α∗ be any optimal solution of (D2C). Define

ν∗ = lim
C→∞

∑n

i=1
α∗

i

Cn

and

ν∗ = lim
C→0

∑n

i=1
α∗

i

Cn
.
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Then 0 ≤ ν∗ ≤ ν∗ = νmax ≤ 1

2
. Thus, for any ν > ν∗, (D2ν) is infeasible. For any ν ∈ (ν∗, ν

∗]
the optimal objective value of (D2ν) is strictly positive, thus there exists at least one C > 0
such that any α is an optimal solution of (D2C) if and only if α/(Cn) is an optimal solution
of (D2ν). For any ν ∈ [0, ν∗], (D2ν) is feasible with zero optimal objective value (and a trivial
solution).

Remark. Consider the case where the data can be perfectly separated by a hyperplane. In
this case, if C → ∞, margin errors are penalized more heavily, and thus for some sufficiently
large C, the solution of (D2C) will be the α∗ corresponding to the separating hyperplane. Thus
there exists some C∗ such that α∗ (corresponding to the separating hyperplane) is an optimal
solution of (D2C) for all C ≥ C∗. In this case, as C → ∞,

∑n

i=1
α∗

i /Cn → 0, and thus
ν∗ = 0.

Remark. Using the definitions of ν+ and ν− in Section 4, it is easy to see that Theorem
3 implies that if γ is fixed and we let C → ∞, (D2C) is equivalent to (D2ν) (in the sense
described above) if we let

ν+ →
ν∗n

2γn+

≥ 0, ν− →
ν∗n

2(1 − γ)n−

≥ 0.

Similarly, if γ is fixed and we let C → 0, (D2C) is equivalent to (D2ν) if we let

ν+ →
νmaxn

2γn+

= min

(

1,
(1 − γ)n−

γn+

)

, ν− →
νmaxn

2(1 − γ)n−

= min

(

1,
γn+

(1 − γ)n−

)

.

6 Conclusion

In this paper we have reviewed extensions of the two main SVM formulations. These exten-
sions address the practical need to penalize errors from the two classes differently in many
classification tasks. The 2C-SVM is commonly used to address this problem, but we have
proven that the 2ν-SVM is equivalent to the 2C-SVM in a certain sense. Additionally, we
have shown that the 2ν-SVM has many properties that make it an attractive alternative
to the 2C-SVM. Specifically, as C becomes very large or small, numerical implementations
of the 2C-SVM can become unstable. Thus, when performing parameter estimation, it is
typical to restrict C to a range of possible values. However, this range is inevitably ar-
bitrary. The 2ν-SVM replaces C and γ with ν+ and ν−. These parameters have a more
intuitive meaning, and we have shown that the 2ν-SVM has a feasible solution if and only
if (ν+, ν−) ∈ [0, 1]2. Thus, the 2ν-SVM offers a much more natural setting for parameter
selection, which is a critical issue in practical applications.
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7 Proof of Theorems

In order to compare (DC) and (Dν), we can rescale (DC) (by setting α′ = α/Cn), in which
case we obtain:

(D′

C) min
α

1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj) −
1

Cn

n
∑

i=1

αi

subject to 0 ≤ αi ≤
1

n
for i = 1, . . . , n

n
∑

i=1

αiyi = 0.

The solutions of (DC) and (D′
C) have a simple relationship: α is a solution of (DC) if and

only if α/(Cn) is a solution of (D′
C). Thus, in this sense, (DC) and (D′

C) are equivalent.
Furthermore, notice that (D′

C) and (Dν) differ only in their objective functions and the
additional inequality constraint of (Dν). In [13] this similarity was exploited to establish a
detailed relationship between (Dν) and (D′

C), and hence between (Dν) and (DC).
We follow a similar course and rescale (D2C) by Cn in order to compare it with (D2ν).

This gives us:

(D′

2C) min
α

1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj) −
1

Cn

n
∑

i=1

αi

subject to 0 ≤ αi ≤
γ

n
for i ∈ I+

0 ≤ αi ≤
1 − γ

n
for i ∈ I−

n
∑

i=1

αiyi = 0.

Rather than proving the theorems in Section 5 directly, we will take advantage of the rela-
tionship between (D2C) and (D′

2C). We will establish equivalent theorems (which we denote
Theorems 1′, 2′, and 3′) relating (D2ν) and (D′

2C), which are then trivially extended to the
theorems stated in Section 5. We begin by proving the following lemma:

Lemma 1. Fix γ ∈ [0, 1] for both (D′
2C) and (D2ν). Assume (D′

2C) and (D2ν) share one
optimal solution α∗ with

∑n

i=1
α∗

i = ν. Then any α is an optimal solution of (D′
2C) if and

only if it is an optimal solution of (D2ν).
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Proof. The analogue of this lemma for (D′
C) and (Dν) is proved in [13]. The proof depends

only on the form of the objective functions (specifically not taking the constraints into
account) and on the analogue of Proposition 2. Since the objective function of (Dν) is
identical to that of (D2ν) and the objective function of (D′

C) is also identical to that of
(D′

2C), we refer the reader to [13] and omit the proof.

For the proofs of Theorems 1′ and 2′, we will need to employ the Karush-Kuhn-Tucker
(KKT) conditions. Essentially, the KKT conditions are necessary and sufficient conditions
for α to be an optimal solution to our optimization problem. Specifically, α is an optimal
solution of (D′

2C) if and only if there exist b ∈ R and λ, ξ ∈ R
n satisfying the KKT conditions:

n
∑

j=1

αjyiyjk(xi,xj) −
1

Cn
+ byi = λi − ξi for i = 1, . . . , n (1)

λiαi = 0, λi ≥ 0, ξi ≥ 0 for i = 1, . . . , n (2)

ξi

(γ

n
− αi

)

= 0, 0 ≤ αi ≤
γ

n
for i ∈ I+ (3)

ξi

(

1 − γ

n
− αi

)

= 0, 0 ≤ αi ≤
1 − γ

n
for i ∈ I− (4)

n
∑

i=1

αiyi = 0. (5)

Similarly, α is an optimal solution of (D2ν) if and only if there exist b, ρ ∈ R and λ, ξ ∈ R
n

satisfying the slightly different KKT conditions:

n
∑

j=1

αjyiyjk(xi,xj) − ρ + byi = λi − ξi for i = 1, . . . , n (6)

λiαi = 0, λi ≥ 0, ξi ≥ 0 for i = 1, . . . , n (7)

ξi

(γ

n
− αi

)

= 0, 0 ≤ αi ≤
γ

n
for i ∈ I+ (8)

ξi

(

1 − γ

n
− αi

)

= 0, 0 ≤ αi ≤
1 − γ

n
for i ∈ I− (9)

n
∑

i=1

αiyi = 0,
n

∑

i=1

αi ≥ ν, ρ

(

n
∑

i=1

αi − ν

)

= 0. (10)

Notice that the two sets of conditions are mostly identical, except for the first and last two
of the conditions for (D2ν). Using this observation, we can prove equivalent versions of the
first two theorems.

Theorem 1′. Fix γ ∈ [0, 1]. For each C > 0, let α∗ be any optimal solution of (D′
2C) and

set ν =
∑n

i=1
α∗

i . Then any α is an optimal solution of (D′
2C) if and only if it is an optimal

solution of (D2ν).
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Proof. If α∗ is an optimal solution of (D′
2C) then it satisfies the KKT conditions for (D′

2C).
By setting ν =

∑n

i=1
α∗

i and ρ = 1/(Cn), we see that α∗ also satisfies the KKT conditions
for (D2ν) and thus is an optimal solution of (D2ν). From Lemma 1 we thus have that, for
any α, α is an optimal solution of (D′

2C) if and only if it is an optimal solution of (D2ν).

Theorem 2′. Fix γ ∈ [0, 1]. Assume (D2ν), 0 < ν ≤ νmax, has a nonzero optimal objective
value, then ρ > 0. Set C = 1/(ρn). Then any α is an optimal solution of (D′

2C) if and only
if it is an optimal solution of (D2ν).

Proof. If α∗ is an optimal solution of (D2ν) then it satisfies the KKT conditions for (D2ν).
From the KKT conditions we have

n
∑

i=1

(

n
∑

j=1

α∗

jyiyjk(xi,xj) − ρ + byi

)

α∗

i =
n

∑

i=1

(λi − ξi)α
∗

i

which, by applying the remaining KKT conditions, reduces to

n
∑

i,j=1

α∗

i α
∗

jyiyjk(xi,xj) − ρ
n

∑

i=1

α∗

i = −
γ

n

n
∑

i=1

ξi.

By assumption, (D2ν) has a nonzero optimal objective value. Thus from Proposition 2 we
have that

∑n

i=1
α∗

i = ν, and we have

ρ =
1

ν

(

n
∑

i,j=1

α∗

i α
∗

jyiyjk(xi,xj) +
γ

n

n
∑

i=1

ξi

)

> 0.

Thus we can choose C > 0 such that C = 1/(ρn) and α∗ is a KKT point of (D′
2C). Thus

from Lemma 1 any α is an optimal solution of (D′
2C) if and only if it is an optimal solution

of (D2ν).

We will need the following lemmas to prove Theorem 3′.

Lemma 2. Fix γ ∈ [0, 1] and let α∗ be an optimal solution of (D′
2C). Define ν =

∑n

i=1
α∗

i . If
the optimal objective value of (D2ν) is zero, then ν = νmax and any α is an optimal solution
of (D2ν) if and only if it is an optimal solution for all (D′

2C), C > 0.

Proof. By setting ρ = 1/Cn, α∗ is a KKT point of (D2ν). Therefore, if the objective function
of (D2ν) is zero,

∑n

i=1

∑n

j=1
α∗

i α
∗
jyiyjk(xi,xj) = 0. Since k is a positive definite kernel, we

also have
∑n

j=1
α∗

jyiyjk(xi,xj) = 0. In this case, (1) of (D′
2C)’s KKT conditions becomes

−
1

Cn
+ byi = λi − ξi for i = 1, . . . , n
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or

−
1

Cn
+ b = λi − ξi for i ∈ I+

−
1

Cn
− b = λi − ξi for i ∈ I−.

Assume that b ≥ 0, then
λi − ξi < 0 for i ∈ I−.

This implies that ξi > 0 for all i ∈ I− since both λi and ξi are nonnegative. Therefore, in
order for the KKT condition ξi((1−γ)/n−α∗

i ) = 0 to hold, we must have α∗
i = (1−γ)/n for

all i ∈ I−. From condition (5) we have that
∑

i∈I+
α∗

i =
∑

i∈I−
α∗

i , thus we need
∑

i∈I+
α∗

i =
(1 − γ)n−/n ≤ γn+/n. Therefore, if (1 − γ)n− > γn+ then we have a contradiction, and it
must be that b < 0.

However, assume without loss of generality that (1 − γ)n− ≤ γn+, in which case b ≥ 0
and α∗

i = (1 − γ)/n for all i ∈ I−. There are three possibilities for i ∈ I+:

1. λi − ξi < 0

2. λi − ξi > 0

3. λi − ξi = 0.

In case 1, where λi − ξi < 0, we have that ξi > 0 for all i ∈ I+. For the KKT condition
ξi(γ/n−αi) = 0 to hold, we need α∗

i = γ/n for all i ∈ I+. The requirement that
∑

i∈I+
α∗

i =
∑

i∈I−
α∗

i and the fact that α∗
i = (1 − γ)/n) for all i ∈ I− imply that

∑n

i=1
α∗

i = 2n+γ/n =
2n−(1 − γ)/n = νmax. Furthermore, the objective function for (D′

2C) in this case becomes

min
α

−
1

Cn

n
∑

i=1

αi

which is clearly minimized by α∗ (in which case
∑n

i=1
α∗

i = νmax) for all C > 0, thus α∗ is
an optimal solution of (D′

2C) for all C > 0. By Lemma 1, any α is an optimal solution of
(D2ν) if and only if it is an optimal solution for all (D′

2C), C > 0.
In case 2, where λi − ξi > 0, we have that λi > 0 for all i ∈ I−. For the KKT condition

λiα
∗
i = 0 to hold, we need α∗

i = 0 for all i ∈ I+. However, the requirement that
∑

i∈I+
α∗

i =
∑

i∈I−
α∗

i and the fact that α∗
i = (1 − γ)/n for all i ∈ I− lead to a contradiction if I− is

nonempty. Hence all the training vectors are in the same class, and α∗
i = 0 for all i. Thus,

∑n

i=1
α∗

i = 0 = νmax. Furthermore, if all the data are from the same class then α∗ = 0 is an
optimal solution of (D′

2C) for all C > 0. Thus, by Lemma 1, any α is an optimal solution of
(D2ν) if and only if it is an optimal solution for all (D′

2C), C > 0.
In case 3, where λi − ξi = 0, we have that either λi = ξi 6= 0 or λi = ξi = 0 for each

i ∈ I+. However, λi = ξi 6= 0 leads to a contradiction because the KKT conditions would
require both α∗

i = 0 and α∗
i = γ/n. Thus, λi = ξi = 0 and the KKT conditions involving
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λi and ξi impose no conditions on α∗
i for i ∈ I+. Since α∗

i = (1 − γ)/n for all i ∈ I−, and
(1 − γ)n− ≤ γn+, we have

∑

i∈I+
α∗

i =
∑

i∈I−
α∗

i = (1 − γ)n+/n. Thus,
∑n

i=1
α∗

i = νmax.
Furthermore, by setting b = 1/(Cn), α∗ is an optimal solution of (D′

2C) for all C > 0. Thus,
by Lemma 1, any α is an optimal solution of (D2ν) if and only if it is an optimal solution
for all (D′

2C), C > 0.

Lemma 3. Assume α∗ is any optimal solution of (D′
2C), then

∑n

i=1
α∗

i is a continuous
decreasing function of C on (0,∞).

Proof. Again, the analogue of this lemma for (D′
C) is proved in [13]. Since the proof depends

only on the form of the objective function and the analogues of Theorems 1′ and 2′, we omit
the proof and refer the reader to [13].

Using these lemmas, we are now ready to prove the equivalent of the main theorem:

Theorem 3′. Fix γ ∈ [0, 1] and let α∗ be any optimal solution of (D′
2C). Define

ν∗ = lim
C→∞

n
∑

i=1

α∗

i

and

ν∗ = lim
C→0

n
∑

i=1

α∗

i .

Then 0 ≤ ν∗ ≤ ν∗ = νmax ≤ 1

2
. Thus, for any ν > ν∗, (D2ν) is infeasible. For any

ν ∈ (ν∗, ν
∗], the optimal objective value of (D2ν) is strictly positive, thus there exists at least

one C > 0 such that any α is an optimal solution of (D′
2C) if and only if it is an optimal

solution of (D2ν). For any ν ∈ [0, ν∗], (D2ν) is feasible with zero optimal objective value (and
a trivial solution).

Proof. From Lemma 3 and the fact that 0 ≤
∑n

i=1
α∗

i ≤ νmax we know that the above limits
exist and can be defined without any problems.

For the any optimal solution of (D′
2C), we have that the KKT condition (1) holds:

n
∑

j=1

αjyiyjk(xi,xj) −
1

Cn
+ b = λi − ξi for i ∈ I+

n
∑

j=1

αjyiyjk(xi,xj) −
1

Cn
− b = λi − ξi for i ∈ I−.

Assume that b ≥ 0. Since α∗ is bounded, when C is sufficiently small, we will have λi−ξi < 0
for i ∈ I+, thus ξi > 0 and from the KKT conditions, α∗

i = γ/n for all i ∈ I+. If γn+/n ≥
(1− γ)n−/n, then this α∗ is feasible and

∑n

i=1
α∗

i = νmax. However, if γn+/n < (1− γ)n−/n
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then we have a contradtiction, and thus b < 0. In this case, for C sufficiently small, λi−ξi < 0
for i ∈ Ii. As above, this implies that α∗

i = (1−γ)/n for all i ∈ I−, and thus
∑n

i=1
α∗

i = νmax.
Hence, ν∗ =

∑n

i=1
α∗

i = νmax. In this case, from Proposition 1 we immediately know that
(D2ν) is infeasible if ν > ν∗.

From Proposition 1, we know that for all ν ≤ ν∗ (D2ν) is feasible. From Lemma 3 we
know that

∑n

i=1
α∗

i is a continuous decreasing function. Thus for any ν ∈ (ν∗, ν
∗], there is a

C > 0 such that
∑n

i=1
α∗

i = ν, and any α is an optimal solution of (D2ν) if and only if it is
an optimal solution for (D′

2C).
If ν < ν∗, (D2ν) must have an optimal objective value of zero because of Theorem 2 and

the definition of ν∗. If ν = ν∗ = 0, the optimal objective value of (D2ν) is zero, as α∗ = 0

is a feasible solution. If ν = ν∗ > 0, the fact that feasible regions of (D2ν) are bounded
by 0 ≤ αi ≤ γ/n for i ∈ I+ and 0 ≤ αi ≤ (1 − γ)/n for i ∈ I−, and Proposition 2 imply
that there exists a sequence {ανj}, ν1 ≤ ν2 ≤ · · · ≤ ν∗ such that ανj is an optimal solution
of (D2ν) with ν = νj,

∑n

i=1
α

νj

i = νj, and α̂ = limνj→ν∗ ανj exists. Since
∑n

i=1
α

νj

i = νj,
∑n

i=1
α̂i = limνj→ν∗

∑n

i=1
α

νj

i = ν∗. We also have that 0 ≤ α̂i ≤ γ/n for i ∈ I+, 0 ≤ α̂i ≤
(1 − γ)/n for i ∈ I−, and

∑n

i=1
yiα̂i = limνj→ν∗ yi

∑n

i=1
α

νj

i = 0 so α̂ is feasible to (D2ν) for
ν = ν∗. However,

∑n

l,m=1
α̂lα̂mylymk(xl,xm) = limνj→ν∗

∑n

l,m=1
α

νj

l α
νj

mylymk(xl,xm) = 0 as
∑n

l,m=1
α

νj

l α
νj

mylymk(xl,xm) = 0 for all νj. Therefore the optimal objective value of (D2ν) is
zero if ν = ν∗.

Finally, from the above discussion, if ν ≤ ν∗, the objective value of (D2ν) is zero. If the
objective value of (D2ν) is zero but ν > ν∗, then by Lemma 3 there is a C > 0 such that, if
α∗ is an optimal solution of (D′

2C), then
∑n

i=1
α∗

i = ν. Thus, from Lemma 2, we have that
ν = νmax = ν∗ < ν∗, a contradiction. Thus the objective value of (D2ν) is zero if and only if
ν ≤ ν∗. In this case, w = 0 and we say that the solution is trivial.
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