

### **Joint Manifold Models**

#### Manifold models

High-dimensional signals often possess low-dimensional geometric structure

Example: SO(3)



K-dimensional *parameter*  $\theta$  captures degrees of freedom in signal  $x \in \mathbb{R}^N$ 

#### **Joint manifolds**

#### In many settings, an ensemble of signals will share a common underlying parameterization

Given submanifolds  $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_J \subset \mathbb{R}^N$ 

- K-dimensional
- jointly homeomorphic

The joint manifold  $\mathcal{M}^* \subset \mathbb{R}^{JN}$  is the *concatenation* of  $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_J$ 

Example:

 $\mathcal{M}_j = \{f_j(\theta), \theta \in \Omega\}$  $\mathcal{M}^* = \{f^*(\theta), \theta \in \Omega\} = \{[f_1(\theta); f_2(\theta); \dots; f_J(\theta)], \theta \in \Omega\}$ 



Joint manifold inherits

- compactness
- smoothness
- volume:  $\max V_j \le V^* \le \sum V_j$
- condition number  $\binom{1}{\tau}$ :  $\frac{1}{\tau^*} \leq \max_j \frac{1}{\tau_j}$

# **Joint Manifold Models for Collaborative Inference**

## Mark A. Davenport, Marco F. Duarte, Chinmay Hegde, Richard G. Baraniuk **Rice University**

#### **Inference with Joint Manifolds**

#### Joint manifold learning

The joint manifold can be *well-conditioned* even when the component manifolds are *ill-conditioned* 

- better performance with fewer samples
- increased tolerance to noise

Example: Manifold learning



Find 2D embedding of a dataset of noisy, high-dimensional signals



Embeddings learned separately

Joint embedding

#### **Dimensionality – curse or blessing?**

By increasing the dimensionality we are more easily able to identify structure and ignore noise

#### **Drawback:**

Computational demands can be overwhelming

#### The random projection method

Let  $\Phi$  be an  $M \times N$  random orthoprojector. Let  $\mathcal{M}$  be a compact, K-dimensional, Riemannian submanifold in  $\mathbb{R}^N$ 

$$M = O\left(\frac{K\log(NV\tau^{-1}\epsilon^{-1})\log(1/\rho)}{\epsilon^2}\right)$$

then with probability at least  $1 - \rho$ 

$$(1-\epsilon) \|x-y\|_2 \le \|\Phi x - \Phi y\|_2 \le (1+\epsilon) \|x-y\|_2$$

for all  $x, y \in \mathcal{M}$ .

[Baraniuk-Wakin, 2006]

 ${\mathcal M}$ 

#### dsp.rice.edu



