A Simple Framework for Analog Compressive Sensing

Mark A. Davenport (with Michael B. Wakin)

Georgia Institute of Technology School of Electrical and Computer Engineering

Can we really acquire analog signals with "CS"?

Potential Obstacles

Obstacle 1: CS is discrete, finite-dimensional

Obstacle 2: Analog sparse representations

Obstacle 1

Map analog sensing to matrix multiplication

Obstacle 2

Map analog sparsity into digital sparsity

Candidate Analog Signal Models

	Model for $\boldsymbol{x}(t)$	Basis for x	Sparsity level for x
multitone	sum of ${\cal S}$ tones	overcomplete DFT	S -sparse

- Typical model in CS
- Coherence
- "Off-grid" tones

Candidate Analog Signal Models

	Model for $\boldsymbol{x}(t)$	Basis for x	Sparsity level for x
multitone	sum of ${\cal S}$ tones	overcomplete DFT	S -sparse
multiband	sum of K bands	?	?

- Landau
- Bresler, Feng, Venkataramani
- Eldar, Mishali

The Problem with the DFT

Another Perspective: Subspace Fitting

$$e_f := \begin{bmatrix} e^{j2\pi f0} \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-1)} \end{bmatrix}$$

Suppose that we wish to minimize

$$\int_{-W}^{W} \|e_f - P_Q e_f\|_2^2 \, df$$

over all subspaces Q of dimension k .

Optimal subspace is spanned by the first k "DPSS vectors".

Discrete Prolate Spheroidal Sequences (DPSS's)

Slepian [1978]: Given an integer N and $W \leq \frac{1}{2}$, the DPSS's are a collection of N vectors

$$s_0, s_1, \ldots, s_{N-1} \in \mathbb{R}^N$$

that satisfy

$$\mathcal{T}_N(\mathcal{B}_W(s_\ell))) = \lambda_\ell s_\ell.$$

The DPSS's are perfectly time-limited, but when $\lambda_\ell \approx 1$ they are highly concentrated in frequency.

DPSS Eigenvalue Concentration

The first $\approx 2NW$ eigenvalues ≈ 1 . The remaining eigenvalues ≈ 0 .

DPSS Examples

DPSS's for Bandpass Signals

DPSS Dictionaries for CS

Most multiband signals, when sampled and time-limited, are well-approximated by a sparse representation in Ψ .

Block-Sparse Recovery

Nonzero coefficients of α should be clustered in blocks according to the occupied frequency bands

$$x = [\Psi_1, \Psi_2, \dots, \Psi_J] \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_J \end{bmatrix}$$

This can be leveraged to reduce the required number of measurements and improve performance through "model-based CS"

-Baraniuk et al. [2008], Blumensath and Davies [2009, 2011]

-Group LASSO

Empirical Results: Noise

[Davenport and Wakin - 2012]

Empirical Results: DFT Comparison

[Davenport and Wakin - 2012]

Empirical Results: DFT Comparison

[Davenport and Wakin - 2012]

Conclusions

- DPSS's can be used to efficiently represent most sampled multiband signals
 - far superior to DFT
- Two types of error: *approximation* + *reconstruction*
 - approximation: small for most signals
 - reconstruction: tends to be small
 - delicate balance in practice, seems to be a sweet spot
- This approach combines careful design of $\Psi\,$ with more sophisticated sparse models
 - relevant in many contexts beyond ADCs