1-Bit Matrix Completion

Mark A. Davenport

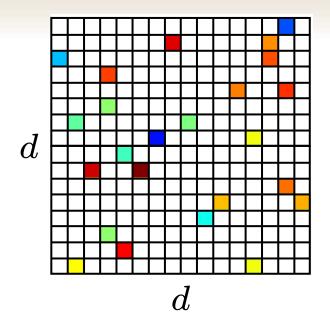
School of Electrical and Computer Engineering Georgia Institute of Technology

Yaniv Plan

Mary Wootters

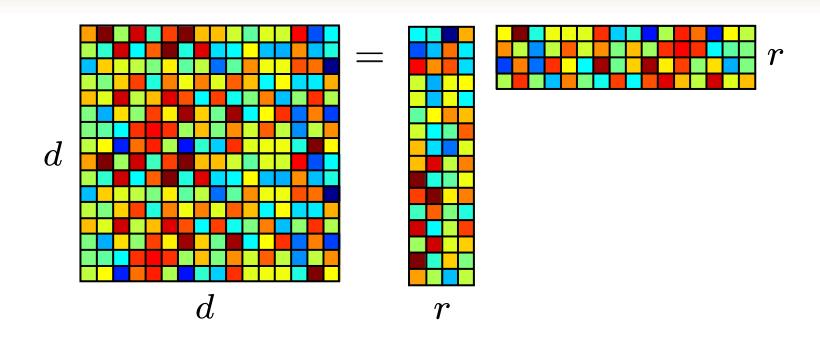
Ewout van den Berg

Matrix Completion



- When is it possible to recover the original matrix?
- How can we do this efficiently?
- How many samples will we need?

Low-Rank Matrices



Singular value decomposition:

$$M = U\Sigma V^*$$

$$pprox dr \ll d^2$$
 degrees of freedom

Collaborative Filtering

The "Netflix Problem"

 $M_{i,j}=% \sum_{j=1}^{n}m_{i,j}$ how much user i likes movie j

Rank 1 model: $u_i = ext{how much user } i$ likes romantic movies $v_j = ext{amount of romance in movie } j$

 $M_{i,j} = u_i v_j$

Rank 2 model: $w_i = \text{how much user } i \text{ likes zombie movies}$

 $x_j =$ amount of zombies in movie j

 $M_{i,j} = u_i v_j + w_i x_j$

Beyond Netflix

- Recovery of incomplete survey data
- Analysis of voting data
- Sensor localization
- Quantum state tomography

• ...

Low-Rank Matrix Recovery

Given:

- a $d \times d$ matrix M of rank r
- $\bullet \ \ {\rm samples} \ {\rm of} \ M \ {\rm on} \ {\rm the} \ {\rm set} \quad : \ Y = M$

How can we recover M?

$$\widehat{M} = \underset{X:X}{\operatorname{arg inf}} \operatorname{rank}(X)$$

Can we replace this with something computationally feasible?

Nuclear Norm Minimization

Convex relaxation!

Replace
$$\operatorname{rank}(X)$$
 with $\|X\|_* = \sum_{j=1}^N |\sigma_j|$

$$\widehat{M} = \underset{X:X}{\operatorname{arg inf}} \|X\|_*$$

If $| \cdot | = O(r d \log d)$, this procedure can recover M!

Matrix Completion in Practice

Noise

$$Y = (M + Z)$$

Quantization

- Netflix: Ratings are integers between 1 and 5
- Survey responses: True/False, Yes/No, Agree/Disagree
- Voting data: Yea/Nay
- Quantum state tomography: Binary outcomes

Extreme quantization destroys low-rank structure

1-Bit Matrix Completion

Extreme case

$$Y = sign(M)$$

Claim: Recovering M from Y is impossible!

No matter how many samples we obtain, all we can learn is whether $\lambda>0$ or $\lambda<0$

1-Bit Matrix Completion

Extreme case

$$Y = sign(M)$$

Claim: Recovering M from Y is impossible!

$$M = uv^*$$

$$\widetilde{u} = \operatorname{sign}(u) \quad \widetilde{v} = \operatorname{sign}(v)$$

$$\widetilde{M} = \widetilde{u}\widetilde{v}^*$$

Is There Any Hope?

If we consider a noisy version of the problem, recovery becomes feasible!

$$Y = sign(M + Z)$$

Fraction of positive/negative observations tells us something about λ

Example of the power of *dithering*

Observation Model

For $(i, j) \in$ we observe

$$Y_{i,j} = \begin{cases} +1 & \text{with probability } f(M_{i,j}) \\ -1 & \text{with probability } 1 - f(M_{i,j}) \end{cases}$$

If f behaves like a CDF, then this is equivalent to

$$Y_{i,j} = \operatorname{sign}(M_{i,j} + Z_{i,j})$$

where $Z_{i,j}$ is drawn according to a suitable distribution

We will assume that is drawn uniformly at random

Examples

Logistic regression / Logistic noise

$$f(x) = \frac{e^x}{1 + e^x}$$

 $Z_{i,j} \sim ext{logistic distribution}$

• Probit regression / Gaussian noise

$$f(x) = \Phi(x/\sigma)$$

$$Z_{i,j} \sim \mathcal{N}(0, \sigma^2)$$

Assumptions

- ullet If the upper-left corner of M is not sampled, we have no information
- Solution: Assume that M is "spread"

$$||M||_{\infty} = \max_{i,j} |M_{i,j}| \le \alpha \approx O(1)$$

Maximum Likelihood Estimation

Log-likelihood function:

$$F(X) = \sum_{(i,j)\in +} \log(f(X_{i,j})) + \sum_{(i,j)\in -} \log(1 - f(X_{i,j}))$$

$$\widehat{M} = \operatorname*{arg\,max} F(X)$$
 s.t. $\operatorname*{rank}(X) \leq r$ $\|X\|_{\infty} \leq \alpha$

Maximum Likelihood Estimation

Log-likelihood function:

$$F(X) = \sum_{(i,j)\in +} \log(f(X_{i,j})) + \sum_{(i,j)\in -} \log(1 - f(X_{i,j}))$$

$$\widehat{M} = \underset{X}{\operatorname{arg\,max}} F(X)$$
s.t.
$$\frac{1}{d\alpha} ||X||_{*} \leq \sqrt{r}$$

$$||X||_{\infty} \leq \alpha$$

Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator)

Assume that $\frac{1}{d\alpha}||M||_* \leq \sqrt{r}$ and $||M||_\infty \leq \alpha$. If is chosen at random with $\mathbb{E}||=m>d\log d$, then with high probability

$$\frac{1}{d^2} \|\widehat{M} - M\|_F^2 \le C\alpha L_\alpha \beta_\alpha \sqrt{\frac{rd}{m}}$$

where

$$L_{\alpha} := \sup_{|x| \le \alpha} \frac{|f'(x)|}{f(x)(1 - f(x))} \qquad \beta_{\alpha} := \sup_{|x| \le \alpha} \frac{f(x)(1 - f(x))}{(f'(x))^2}$$

Is this bound tight?

Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator)

Assume that $\frac{1}{d\alpha}||M||_* \leq \sqrt{r}$ and $||M||_\infty \leq \alpha$. If is chosen at random with $\mathbb{E}|_{}^{} |=m>d\log d$, then with high probability

$$\frac{1}{d^2} \|\widehat{M} - M\|_F^2 \le C\alpha L_\alpha \beta_\alpha \sqrt{\frac{rd}{m}}$$

Theorem (Lower bound on any estimator)

There exist M satisfying the assumptions above such that for any set \quad with $\mid \ \mid = m$, we have (under mild technical assumptions) that

$$\inf_{\widehat{M}} \mathbb{E} \left[\frac{1}{d^2} \| \widehat{M} - M \|_F^2 \right] \ge c\alpha \sqrt{\beta_{\frac{3}{4}\alpha}} \sqrt{\frac{rd}{m}}$$

Logistic Model

$$L_{\alpha} = 1$$
 $\beta_{\alpha} \approx e^{\alpha}$

Theorem (Upper bound achieved by convex ML estimator)

$$\frac{1}{d^2} \|\widehat{M} - M\|_F^2 \le C\alpha e^\alpha \sqrt{\frac{rd}{m}}$$

Theorem (Lower bound on any estimator)

$$\inf_{\widehat{M}} \mathbb{E}\left[\frac{1}{d^2} \|\widehat{M} - M\|_F^2\right] \ge c\alpha e^{\frac{3}{8}\alpha} \sqrt{\frac{rd}{m}}$$

Probit Model

$$L_{\alpha} pprox rac{rac{lpha}{\sigma} + 1}{\sigma} \quad eta_{lpha} pprox \sigma^2 e^{lpha^2/2\sigma^2}$$

Theorem (Upper bound achieved by convex ML estimator)

$$\frac{1}{d^2} \|\widehat{M} - M\|_F^2 \le C \left(\frac{\alpha}{\sigma} + 1\right) e^{\alpha^2/2\sigma^2} \sigma \alpha \sqrt{\frac{rd}{m}}$$

Two regimes

- High signal-to-noise ratio: $\sigma \leq \alpha$
- Low signal-to-noise ratio: $\sigma \ge \alpha$

Compare to how well we can estimate M from unquantized, noisy measurements

Probit Model (High SNR)

Theorem (Upper bound achieved by convex ML estimator)

$$\frac{1}{d^2} \|\widehat{M} - M\|_F^2 \le C\alpha^2 e^{\alpha^2/2\sigma^2} \sqrt{\frac{rd}{m}}$$

Theorem (Lower bound on any estimator with unquantized measurements)

$$\inf_{\widehat{M}} \mathbb{E}\left[\frac{1}{d^2} \|\widehat{M} - M\|_F^2\right] \ge c\alpha\sigma\sqrt{\frac{rd}{m}}$$

Probit Model (Low SNR)

Theorem (Upper bound achieved by convex ML estimator)

$$\frac{1}{d^2} \|\widehat{M} - M\|_F^2 \le C\alpha\sigma\sqrt{\frac{rd}{m}}$$

Theorem (Lower bound on any estimator with unquantized measurements)

$$\inf_{\widehat{M}} \mathbb{E}\left[\frac{1}{d^2} \|\widehat{M} - M\|_F^2\right] \ge c\alpha\sigma\sqrt{\frac{rd}{m}}$$

More noise can lead to *improved* performance!

Recovery of the Distribution

- It is also possible to establish bounds concerning the recovery of the distribution $f({\cal M})$
- We obtain matching upper and lower bounds on the average Hellinger distance between f(M) and $f(\widehat{M})$
- When $\lim_{\alpha\to\infty}L_\alpha<\infty$, we can recover the distribution f(M) without any assumptions on $||M||_\infty$
 - logistic model
 - not probit model
 - any model where the noise has heavy tails

Proof Methods

- Upper bounds
 - Probability in Banach spaces
 - Random matrix theory
- Lower bounds
 - Information theoretic arguments
 - Fano's inequality
 - Packing sets of low-rank matrices

Tiny Sketch of Proof of Upper Bound

Recall that we maximize the log-likelihood F(X)

- For a fixed matrix X, $\mathbb{E}\left[F(M)-F(X)\right]=c\cdot D(f(X)||f(M))$
- Lemma: Let $K=\{X:\frac{1}{d\alpha}\|X\|_*\leq \sqrt{r}\}$. With high probability, $\sup_{X\in K}|F(X)-\mathbb{E}F(X)|\leq \delta$
- By definition, $F(\widehat{M}) \ge F(M)$

$$\begin{aligned} 0 &\geq F(M) - F(\widehat{M}) \\ &\geq \mathbb{E}\left[F(M) - F(\widehat{M})\right] - 2\delta \\ &= c \cdot D(f(\widehat{M})||f(M)) - 2\delta \end{aligned}$$

• Thus, $D(f(\widehat{M})||f(M)) \leq \frac{2}{c}\delta$

Voting Simulation

Binary (incomplete) data:

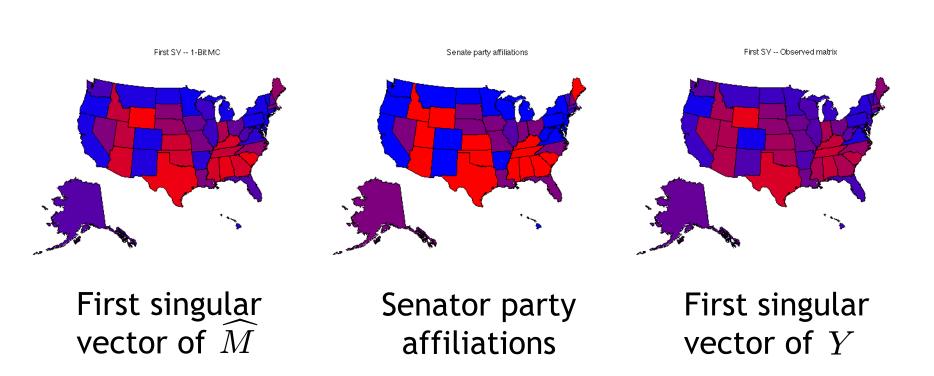
Voting history of 105 US senators on 299 bills from 2008-2010

Voting Simulation

Randomly delete 90% of the entries

Voting Simulation

Randomly delete 95% of the entries



86% of missing votes correctly predicted

MovieLens Data Set

- 100,000 movie ratings (1000 users, 1700 movies) on a scale from 1 to 5
- Convert to binary outcomes by comparing each rating to the average rating in the data set
- Evaluate by checking if we predict the correct sign
- Training on 95,000 ratings and testing on remainder
 - "standard" matrix completion: 68% accuracy
 - 1-bit matrix completion: 74% accuracy

Thank You!