1-Bit Matrix Completion

Mark A. Davenport

School of Electrical and Computer Engineering Georgia Institute of Technology

Yaniv Plan

Mary Wootters

Ewout van den Berg

Matrix Completion

Matrix Completion

Matrix Completion

- When is it possible to recover the original matrix?
- How can we do this efficiently?
- How many samples will we need?

Low-Rank Matrices

Singular value decomposition:

$$M = U\Sigma V^*$$

 $\approx dr \ll d^2$

degrees of freedom

Low-Rank Matrix Recovery

Given:

- a $d \times d$ matrix $M \text{of rank} \ r$
- samples of $M \, {\rm on}$ the set $\ : \ Y = M$

How can we recover M?

$$\widehat{M} = \underset{X:X = Y}{\operatorname{arg inf}} \operatorname{rank}(X)$$

Nuclear Norm Minimization

Convex relaxation!

Replace rank(X) with
$$||X||_* = \sum_{j=1}^d |\sigma_j|$$

$$\widehat{M} = \underset{X:X = Y}{\operatorname{arg inf}} \|X\|_*$$

If $| = O(r d \log d)$, this procedure can recover M!

Applications

- Collaborative Filtering (aka the "Netflix Problem")
- Recovery of incomplete survey data
- Analysis of voting data
- Sensor localization
- Quantum state tomography

Matrix Completion in Practice

Noise

$$Y = (M + Z)$$

Matrix Completion in Practice

Noise

$$Y = (M + Z)$$

- Quantization
 - Netflix: Ratings are integers between 1 and 5
 - Survey responses: True/False, Yes/No, Agree/Disagree
 - Voting data: Yea/Nay
 - Quantum state tomography: Binary outcomes

Matrix Completion in Practice

Noise

$$Y = (M + Z)$$

- Quantization
 - Netflix: Ratings are integers between 1 and 5
 - Survey responses: True/False, Yes/No, Agree/Disagree
 - Voting data: Yea/Nay
 - Quantum state tomography: Binary outcomes

Extreme quantization *destroys low-rank structure* and makes recovery *highly ill-posed*

1-Bit Matrix Completion

Extreme case

$$Y = \operatorname{sign}(M)$$

Claim: Recovering M from Y is impossible!

No matter how many samples we obtain, all we can learn is whether $\lambda>0\,$ or $\,\lambda<0\,$

Is There Any Hope?

If we consider a noisy version of the problem, recovery becomes feasible!

$$Y = \operatorname{sign}(M + Z)$$

$$M + Z = \begin{bmatrix} \lambda + Z_{1,1} & \lambda + Z_{1,2} & \lambda + Z_{1,3} & \lambda + Z_{1,4} \\ \lambda + Z_{2,1} & \lambda + Z_{2,2} & \lambda + Z_{2,3} & \lambda + Z_{2,4} \\ \lambda + Z_{3,1} & \lambda + Z_{3,2} & \lambda + Z_{3,3} & \lambda + Z_{3,4} \\ \lambda + Z_{4,1} & \lambda + Z_{4,2} & \lambda + Z_{4,3} & \lambda + Z_{4,4} \end{bmatrix}$$

Fraction of positive/negative observations tells us something about λ

Example of the power of *dithering*

Observation Model

For $(i, j) \in$ we observe

$$Y_{i,j} = \begin{cases} +1 & \text{with probability } f(M_{i,j}) \\ -1 & \text{with probability } 1 - f(M_{i,j}) \end{cases}$$

If f behaves like a CDF, then this is equivalent to

$$Y_{i,j} = \operatorname{sign}(M_{i,j} + Z_{i,j})$$

where $Z_{i,j}$ is drawn according to a suitable distribution

We will assume that \quad is drawn uniformly at random and that $\|M\|_{\infty} \leq \alpha$

Examples

• Logistic regression / Logistic noise

$$f(x) = rac{e^x}{1 + e^x}$$

 $Z_{i,j} \sim ext{logistic distribution}$

• Probit regression / Gaussian noise

$$f(x) = \Phi(x/\sigma)$$

$$Z_{i,j} \sim \mathcal{N}(0,\sigma^2)$$

Maximum Likelihood Estimation

Log-likelihood function:

$$F(X) = \sum_{(i,j)\in +} \log(f(X_{i,j})) + \sum_{(i,j)\in -} \log(1 - f(X_{i,j}))$$

$$\widehat{M} = \operatorname*{arg\,max}_{X} F(X)$$

s.t. $\operatorname{rank}(X) \leq r$
 $\|X\|_{\infty} \leq \alpha$

Maximum Likelihood Estimation

Log-likelihood function:

$$F(X) = \sum_{(i,j)\in +} \log(f(X_{i,j})) + \sum_{(i,j)\in -} \log(1 - f(X_{i,j}))$$

$$\widehat{M} = \operatorname*{arg\,max}_{X} F(X)$$

s.t.
$$\frac{1}{d\alpha} \|X\|_{*} \leq \sqrt{r}$$
$$\|X\|_{\infty} \leq \alpha$$

Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator) Assume that $\frac{1}{d\alpha} ||M||_* \le \sqrt{r}$ and $||M||_{\infty} \le \alpha$. If is chosen at random with $\mathbb{E}|_{-}^{-} ||m| = m > d \log d$, then with high probability

$$\frac{1}{d^2} \|\widehat{M} - M\|_F^2 \le C\alpha L_\alpha \beta_\alpha \sqrt{\frac{rd}{m}}$$

where

$$L_{\alpha} := \sup_{|x| \le \alpha} \frac{|f'(x)|}{f(x)(1 - f(x))} \qquad \beta_{\alpha} := \sup_{|x| \le \alpha} \frac{f(x)(1 - f(x))}{(f'(x))^2}$$

Is this bound tight?

Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator) Assume that $\frac{1}{d\alpha} ||M||_* \leq \sqrt{r}$ and $||M||_{\infty} \leq \alpha$. If is chosen at random with $\mathbb{E}||=m > d \log d$, then with high probability

$$\frac{1}{d^2} \|\widehat{M} - M\|_F^2 \le C \alpha L_\alpha \beta_\alpha \sqrt{\frac{rd}{m}}$$

Theorem (Lower bound on any estimator)

For any recovery algorithm \widehat{M} there exist M satisfying the assumptions above such that for any set with | = m, we have (under mild technical assumptions) that

$$\mathbb{E}\left[\frac{1}{d^2}\|\widehat{M} - M\|_F^2\right] \ge c\alpha \sqrt{\beta_{\frac{3}{4}\alpha}} \sqrt{\frac{rd}{m}}$$

Conclusions

- In the stochastic setting, 1-bit matrix completion is possible via a simple convex algorithm
- Proof techniques
 - Upper bounds: random matrix theory
 - Lower bounds: Fano's inequality, packing sets of low-rank matrices
- More noise helps, but only up to a point

Thank You!