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Matrix Completion 

• When is it possible to recover the original matrix? 

 

• How can we do this efficiently? 

 

• How many samples will we need? 
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Low-Rank Matrices 

Singular value decomposition: 

degrees of freedom 
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Low-Rank Matrix Recovery 

Given: 

• a           matrix     of rank  

• samples of     on the set    : 

 

How can we recover     ? 
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Nuclear Norm Minimization 

Convex relaxation! 

 

Replace               with                         

 

 

 

 

 

 

If                           , this procedure can recover      ! 

cM = arg inf
X:X=Y
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Applications 

• Collaborative Filtering (aka the “Netflix Problem”) 

 

• Recovery of incomplete survey data 

 

• Analysis of voting data 

 

• Sensor localization 

 

• Quantum state tomography 

 

• … 

 



Matrix Completion in Practice 

• Noise 

 

 

Y = (M +Z)



Matrix Completion in Practice 

• Noise 

 

 

• Quantization 

– Netflix: Ratings are integers between 1 and 5 

– Survey responses: True/False, Yes/No, Agree/Disagree 

– Voting data: Yea/Nay 

– Quantum state tomography: Binary outcomes 
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Matrix Completion in Practice 

• Noise 

 

 

• Quantization 

– Netflix: Ratings are integers between 1 and 5 

– Survey responses: True/False, Yes/No, Agree/Disagree 

– Voting data: Yea/Nay 

– Quantum state tomography: Binary outcomes 

 

 

Extreme quantization destroys low-rank structure and makes 

 recovery highly ill-posed 

Y = (M +Z)



1-Bit Matrix Completion 

Extreme case 

 

 

Claim: Recovering      from     is impossible! 

 

 

 

 

 

No matter how many samples we obtain, all we can learn is 

whether           or 

Y = sign(M)
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Is There Any Hope? 

If we consider a noisy version of the problem, recovery 

becomes feasible! 

 

 

 

 

 

 

 

Fraction of positive/negative observations tells us something 

about 

 

Example of the power of dithering 

M + Z =

2
664

¸+ Z1;1 ¸+Z1;2 ¸+Z1;3 ¸+ Z1;4
¸+ Z2;1 ¸+Z2;2 ¸+Z2;3 ¸+ Z2;4
¸+ Z3;1 ¸+Z3;2 ¸+Z3;3 ¸+ Z3;4
¸+ Z4;1 ¸+Z4;2 ¸+Z4;3 ¸+ Z4;4
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Y = sign(M+Z)



Observation Model 

For               we observe 

 

 

 

 

If     behaves like a CDF, then this is equivalent to 

 

 

where       is drawn according to a suitable distribution 

 

We will assume that      is drawn uniformly at random and 

that  

Yi;j =

(
+1 with probability f(Mi;j)

¡1 with probability 1¡ f(Mi;j)

(i; j) 2 

Yi;j = sign(Mi;j +Zi;j)
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Examples 

• Logistic regression / Logistic noise 

 

 

 

 

 

• Probit regression / Gaussian noise 

f(x) =
ex

1 + ex

f(x) = ©(x=¾)

Zi;j »N(0; ¾
2
)

Zi;j » logistic distribution 



Maximum Likelihood Estimation 

Log-likelihood function: 

 

 

 

 

F(X) =
X

(i;j)2+

log(f(Xi;j)) +
X

(i;j)2¡

log(1¡ f(Xi;j))

cM = argmax
X

F(X)

rank(X) · r

kXk1 · ®

s.t.
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Recovery of the Matrix 

Theorem (Upper bound achieved by convex ML estimator) 

Assume that                        and                  . If     is chosen at 

random with                            , then with high probability 
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Is this bound tight? 
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Recovery of the Matrix 

Theorem (Upper bound achieved by convex ML estimator) 

Assume that                        and                  . If     is chosen at 

random with                            , then with high probability 

 

 

 

Theorem (Lower bound on any estimator) 

For any recovery algorithm      there exist     satisfying the 

assumptions above such that for any set     with             , we 

have (under mild technical assumptions) that 
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Conclusions 

• In the stochastic setting, 1-bit matrix completion is 

possible via a simple convex algorithm 

 

• Proof techniques 

– Upper bounds: random matrix theory 

– Lower bounds: Fano’s inequality, packing sets of low-rank  

            matrices 

 

• More noise helps, but only up to a point 

 



Thank You! 


