1-Bit Matrix Completion

Mark A. Davenport
School of Electrical and Computer Engineering Georgia Institute of Technology

Yaniv Plan

Mary Wootters

Ewout van den Berg

Matrix Completion

Matrix Completion

Matrix Completion

- When is it possible to recover the original matrix?
- How can we do this efficiently?
- How many samples will we need?

Low-Rank Matrices

Singular value decomposition:

$$
M=U \Sigma V^{*} \quad \Longrightarrow \quad \approx \begin{gathered}
d r \ll d^{2} \\
\text { degrees of freedom }
\end{gathered}
$$

Low-Rank Matrix Recovery

Given:

- a $d \times d$ matrix M of rank r
- samples of M on the set $: Y=M$

How can we recover M ?

$$
\widehat{M}=\underset{X: X}{\arg } \inf _{=Y} \operatorname{rank}(X)
$$

Nuclear Norm Minimization

Convex relaxation!
Replace $\operatorname{rank}(X)$ with $\|X\|_{*}=\sum_{j=1}^{d}\left|\sigma_{j}\right|$

$$
\widehat{M}=\underset{X: X=Y}{\arg \inf _{=Y}\|X\|_{*}, ~}
$$

If | $\mid=O(r d \log d)$, this procedure can recover M !

Applications

- Collaborative Filtering (aka the "Netflix Problem")
- Recovery of incomplete survey data
- Analysis of voting data
- Sensor localization
- Quantum state tomography

Matrix Completion in Practice

- Noise

$$
Y=(M+Z)
$$

Matrix Completion in Practice

- Noise

$$
Y=(M+Z)
$$

- Quantization
- Netflix: Ratings are integers between 1 and 5
- Survey responses: True/False, Yes/No, Agree/Disagree
- Voting data: Yea/Nay
- Quantum state tomography: Binary outcomes

Matrix Completion in Practice

- Noise

$$
Y=(M+Z)
$$

- Quantization
- Netflix: Ratings are integers between 1 and 5
- Survey responses: True/False, Yes/No, Agree/Disagree
- Voting data: Yea/Nay
- Quantum state tomography: Binary outcomes

Extreme quantization destroys low-rank structure and makes recovery highly ill-posed

1-Bit Matrix Completion

Extreme case

$$
Y=\operatorname{sign}(M)
$$

Claim: Recovering M from Y is impossible!

$$
M=\left[\begin{array}{llll}
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda
\end{array}\right]
$$

No matter how many samples we obtain, all we can learn is whether $\lambda>0$ or $\lambda<0$

Is There Any Hope?

If we consider a noisy version of the problem, recovery becomes feasible!

$$
\begin{gathered}
Y=\operatorname{sign}(M+Z) \\
M+Z=\left[\begin{array}{llll}
\lambda+Z_{1,1} & \lambda+Z_{1,2} & \lambda+Z_{1,3} & \lambda+Z_{1,4} \\
\lambda+Z_{2,1} & \lambda+Z_{2,2} & \lambda+Z_{2,3} & \lambda+Z_{2,4} \\
\lambda+Z_{3,1} & \lambda+Z_{3,2} & \lambda+Z_{3,3} & \lambda+Z_{3,4} \\
\lambda+Z_{4,1} & \lambda+Z_{4,2} & \lambda+Z_{4,3} & \lambda+Z_{4,4}
\end{array}\right]
\end{gathered}
$$

Fraction of positive/negative observations tells us something about λ

Example of the power of dithering

Observation Model

For $(i, j) \in \quad$ we observe

$$
Y_{i, j}= \begin{cases}+1 & \text { with probability } f\left(M_{i, j}\right) \\ -1 & \text { with probability } 1-f\left(M_{i, j}\right)\end{cases}
$$

If f behaves like a CDF, then this is equivalent to

$$
Y_{i, j}=\operatorname{sign}\left(M_{i, j}+Z_{i, j}\right)
$$

where $Z_{i, j}$ is drawn according to a suitable distribution

We will assume that is drawn uniformly at random and that $\|M\|_{\infty} \leq \alpha$

Examples

- Logistic regression / Logistic noise

$$
\begin{aligned}
f(x) & =\frac{e^{x}}{1+e^{x}} \\
Z_{i, j} & \sim \text { logistic distribution }
\end{aligned}
$$

- Probit regression / Gaussian noise

$$
\begin{aligned}
f(x) & =\Phi(x / \sigma) \\
Z_{i, j} & \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Maximum Likelihood Estimation

Log-likelihood function:

$$
F(X)=\sum_{(i, j) \in_{+}} \log \left(f\left(X_{i, j}\right)\right)+\sum_{(i, j) \in_{-}} \log \left(1-f\left(X_{i, j}\right)\right)
$$

$$
\begin{aligned}
& \widehat{M}=\underset{X}{\arg \max } F(X) \\
& \text { s.t. } \operatorname{rank}(X) \leq r \\
&\|X\|_{\infty} \leq \alpha
\end{aligned}
$$

Maximum Likelihood Estimation

Log-likelihood function:

$$
F(X)=\sum_{(i, j) \in_{+}} \log \left(f\left(X_{i, j}\right)\right)+\sum_{(i, j) \in_{-}} \log \left(1-f\left(X_{i, j}\right)\right)
$$

$$
\left.\begin{array}{rl}
\widehat{M}=\underset{X}{\arg \max } & F(X) \\
\text { s.t. } \frac{1}{d \alpha}\|X\|_{*} & \leq \sqrt{r} \\
\|X\|_{\infty} \leq \alpha
\end{array}\right)
$$

Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator) Assume that $\frac{1}{d \alpha}\|M\|_{*} \leq \sqrt{r}$ and $\|M\|_{\infty} \leq \alpha$. If is chosen at random with $\mathbb{E}|\mid=m>d \log d$, then with high probability

$$
\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2} \leq C \alpha L_{\alpha} \beta_{\alpha} \sqrt{\frac{r d}{m}}
$$

where

$$
L_{\alpha}:=\sup _{|x| \leq \alpha} \frac{\left|f^{\prime}(x)\right|}{f(x)(1-f(x))} \quad \beta_{\alpha}:=\sup _{|x| \leq \alpha} \frac{f(x)(1-f(x))}{\left(f^{\prime}(x)\right)^{2}}
$$

Is this bound tight?

Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator)
Assume that $\frac{1}{d \alpha}\|M\|_{*} \leq \sqrt{r}$ and $\|M\|_{\infty} \leq \alpha$. If is chosen at random with $\mathbb{E}|\quad|=m>d \log d$, then with high probability

$$
\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2} \leq C \alpha L_{\alpha} \beta_{\alpha} \sqrt{\frac{r d}{m}}
$$

Theorem (Lower bound on any estimator)
For any recovery algorithm \widehat{M} there exist M satisfying the assumptions above such that for any set with $|\mid=m$, we have (under mild technical assumptions) that

$$
\mathbb{E}\left[\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2}\right] \geq c \alpha \sqrt{\beta_{\frac{3}{4} \alpha}} \sqrt{\frac{r d}{m}}
$$

Conclusions

- In the stochastic setting, 1-bit matrix completion is possible via a simple convex algorithm
- Proof techniques
- Upper bounds: random matrix theory
- Lower bounds: Fano's inequality, packing sets of low-rank matrices
- More noise helps, but only up to a point

Thank You!

