1-Bit Matrix Completion

Mark A. Davenport
School of Electrical and Computer Engineering Georgia Institute of Technology

Yaniv Plan

Mary Wootters

Ewout van den Berg

Matrix Completion

- When is it possible to recover the original matrix?
- How can we do this efficiently?
- How many samples will we need?

Low-Rank Matrices

Singular value decomposition:

$$
M=U \Sigma V^{*} \quad \Longrightarrow \quad \approx \begin{gathered}
d r \ll d^{2} \\
\text { degrees of freedom }
\end{gathered}
$$

Collaborative Filtering

The "Netflix Problem"

$$
M_{i, j}=\text { how much user } i \text { likes movie } j
$$

Rank 1 model: $\quad u_{i}=$ how much user i likes romantic movies
$v_{j}=$ amount of romance in movie j

$$
M_{i, j}=u_{i} v_{j}
$$

Rank 2 model: $\quad w_{i}$ how much user i likes zombie movies
$x_{j}=$ amount of zombies in movie j

$$
M_{i, j}=u_{i} v_{j}+w_{i} x_{j}
$$

Beyond Netflix

- Recovery of incomplete survey data
- Analysis of voting data
- Sensor localization
- Quantum state tomography

Low-Rank Matrix Recovery

Given:

- a $d \times d$ matrix M of rank r
- samples of M on the set $: Y=M$

How can we recover M ?

$$
\widehat{M}=\underset{X: X}{\arg } \inf _{=Y} \operatorname{rank}(X)
$$

Can we replace this with something computationally feasible?

Nuclear Norm Minimization

Convex relaxation!
Replace $\operatorname{rank}(X)$ with $\|X\|_{*}=\sum_{j=1}^{d}\left|\sigma_{j}\right|$

$$
\widehat{M}=\underset{X: X}{\arg \inf }\|X\|_{*}
$$

If | $\mid=O(r d \log d)$, under certain assumptions, this procedure can recover M !

Matrix Completion in Practice

- Noise

$$
Y=(M+Z)
$$

- Quantization
- Netflix: Ratings are integers between 1 and 5
- Survey responses: True/False, Yes/No, Agree/Disagree
- Voting data: Yea/Nay
- Quantum state tomography: Binary outcomes

Extreme quantization destroys low-rank structure

What's the Problem?

Click to LOOK INSIDE!

amazon

Customer Reviews

Linear Operator Theory in Engineering and Science (Applied Mathematical Sciences)

	4 Reviews	Average Customer Review Alathent (4 customer revievs)
5 star:	(4)	
4 star:	(0)	Share your thoughts with other customers
3 star:	(0)	Create your own review
ar	(0)	

thethen i would give 6 stars!, Febr lary 26, 2012

Amazon Verified Purchase (What's this?)
This review is from: Linear Operator Theory in Engineering and Science (Applied Mathematical Sciences) (Paperback)
I'm doing a PhD in econometrics and I need to apply operator theories in constructing a linear or nonlinear operator to help explain individual economic behaviour. This book contains numerous useful ideas and applications with exercises thoroughly designed; one of the questions in the exercise gave me an idea of creating a matrix for describing a nonlinear operator. That question asks for a matrix that describes a second order differential operator and that gave me an idea that taylor series approximation can be used to linearise a nonlinear operator and hence a nonlinear operator may also be described by a matrix.

Help other customers find the most helpful reviews
Was this review helpful to you? Yes No
Report abuse | Permalink
Comment

1-Bit Matrix Completion

Extreme case

$$
Y=\operatorname{sign}(M)
$$

Claim: Recovering M from Y is impossible!

$$
M=\left[\begin{array}{llll}
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda
\end{array}\right]
$$

No matter how many samples we obtain, all we can learn is whether $\lambda>0$ or $\lambda<0$

Is There Any Hope?

If we consider a noisy version of the problem, recovery becomes feasible!

$$
\begin{gathered}
Y=\operatorname{sign}(M+Z) \\
M+Z=\left[\begin{array}{llll}
\lambda+Z_{1,1} & \lambda+Z_{1,2} & \lambda+Z_{1,3} & \lambda+Z_{1,4} \\
\lambda+Z_{2,1} & \lambda+Z_{2,2} & \lambda+Z_{2,3} & \lambda+Z_{2,4} \\
\lambda+Z_{3,1} & \lambda+Z_{3,2} & \lambda+Z_{3,3} & \lambda+Z_{3,4} \\
\lambda+Z_{4,1} & \lambda+Z_{4,2} & \lambda+Z_{4,3} & \lambda+Z_{4,4}
\end{array}\right]
\end{gathered}
$$

Fraction of positive/negative observations tells us something about λ

Example of the power of dithering

Observation Model

For $(i, j) \in \quad$ we observe

$$
Y_{i, j}= \begin{cases}+1 & \text { with probability } f\left(M_{i, j}\right) \\ -1 & \text { with probability } 1-f\left(M_{i, j}\right)\end{cases}
$$

If f behaves like a CDF, then this is equivalent to

$$
Y_{i, j}=\operatorname{sign}\left(M_{i, j}+Z_{i, j}\right)
$$

where $Z_{i, j}$ is drawn according to a suitable distribution

We will assume that is drawn uniformly at random

Examples

- Logistic regression / Logistic noise

$$
\begin{aligned}
f(x) & =\frac{e^{x}}{1+e^{x}} \\
Z_{i, j} & \sim \text { logistic distribution }
\end{aligned}
$$

- Probit regression / Gaussian noise

$$
\begin{aligned}
f(x) & =\Phi(x / \sigma) \\
Z_{i, j} & \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Maximum Likelihood Estimation

Log-likelihood function:

$$
F(X)=\sum_{(i, j) \in_{+}} \log \left(f\left(X_{i, j}\right)\right)+\sum_{(i, j) \in_{-}} \log \left(1-f\left(X_{i, j}\right)\right)
$$

$$
\begin{aligned}
\widehat{M}=\underset{X}{\arg \max } & F(X) \\
& \text { s.t. } \operatorname{rank}(X) \leq r
\end{aligned}
$$

Maximum Likelihood Estimation

Log-likelihood function:

$$
F(X)=\sum_{(i, j) \in_{+}} \log \left(f\left(X_{i, j}\right)\right)+\sum_{(i, j) \in_{-}} \log \left(1-f\left(X_{i, j}\right)\right)
$$

$$
\left.\begin{array}{rl}
\widehat{M}=\underset{X}{\arg \max } & F(X) \\
\text { s.t. } \frac{1}{d \alpha}\|X\|_{*} & \leq \sqrt{r} \\
\|X\|_{\infty} \leq \alpha
\end{array}\right)
$$

Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator) Assume that $\frac{1}{d \alpha}\|M\|_{*} \leq \sqrt{r}$ and $\|M\|_{\infty} \leq \alpha$. If is chosen at random with $\mathbb{E}|\mid=m>d \log d$, then with high probability

$$
\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2} \leq C \alpha L_{\alpha} \beta_{\alpha} \sqrt{\frac{r d}{m}}
$$

where

$$
L_{\alpha}:=\sup _{|x| \leq \alpha} \frac{\left|f^{\prime}(x)\right|}{f(x)(1-f(x))} \quad \beta_{\alpha}:=\sup _{|x| \leq \alpha} \frac{f(x)(1-f(x))}{\left(f^{\prime}(x)\right)^{2}}
$$

Is this bound tight?

Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator)
Assume that $\frac{1}{d \alpha}\|M\|_{*} \leq \sqrt{r}$ and $\|M\|_{\infty} \leq \alpha$. If is chosen at random with $\mathbb{E}|\quad|=m>d \log d$, then with high probability

$$
\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2} \leq C \alpha L_{\alpha} \beta_{\alpha} \sqrt{\frac{r d}{m}}
$$

Theorem (Lower bound on any estimator)
There exist M satisfying the assumptions above such that for any set with | $\mid=m$, we have (under mild technical assumptions) that

$$
\inf _{\widehat{M}} \mathbb{E}\left[\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2}\right] \geq c \alpha \sqrt{\beta_{\frac{3}{4} \alpha}} \sqrt{\frac{r d}{m}}
$$

Logistic Model

$$
L_{\alpha}=1 \quad \beta_{\alpha} \approx e^{\alpha}
$$

Theorem (Upper bound achieved by convex ML estimator)

$$
\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2} \leq C \alpha e^{\alpha} \sqrt{\frac{r d}{m}}
$$

Theorem (Lower bound on any estimator)

$$
\inf _{\bar{M}} \mathbb{E}\left[\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2}\right] \geq c \alpha e^{\frac{3}{8} \alpha} \sqrt{\frac{r d}{m}}
$$

Probit Model

$$
L_{\alpha} \approx \frac{\frac{\alpha}{\sigma}+1}{\sigma} \quad \beta_{\alpha} \approx \sigma^{2} e^{\alpha^{2} / 2 \sigma^{2}}
$$

Theorem (Upper bound achieved by convex ML estimator)

$$
\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2} \leq C\left(\frac{\alpha}{\sigma}+1\right) e^{\alpha^{2} / 2 \sigma^{2}} \sigma \alpha \sqrt{\frac{r d}{m}}
$$

Two regimes

- High signal-to-noise ratio: $\sigma \leq \alpha$
- Low signal-to-noise ratio: $\sigma \geq \alpha$

Compare to how well we can estimate M from unquantized, noisy measurements

Probit Model (High SNR)

Theorem (Upper bound achieved by convex ML estimator)

$$
\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2} \leq C \alpha^{2} e^{\alpha^{2} / 2 \sigma^{2}} \sqrt{\frac{r d}{m}}
$$

Theorem (Lower bound on any estimator with unquantized measurements)

$$
\inf _{\widehat{M}} \mathbb{E}\left[\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2}\right] \geq c \alpha \sigma \sqrt{\frac{r d}{m}}
$$

Probit Model (Low SNR)

Theorem (Upper bound achieved by convex ML estimator)

$$
\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2} \leq C \alpha \sigma \sqrt{\frac{r d}{m}}
$$

Theorem (Lower bound on any estimator with unquantized measurements)

$$
\inf _{\bar{M}} \mathbb{E}\left[\frac{1}{d^{2}}\|\widehat{M}-M\|_{F}^{2}\right] \geq c \alpha \sigma \sqrt{\frac{r d}{m}}
$$

More noise can lead to improved performance!

Recovery of the Distribution

- It is also possible to establish bounds concerning the recovery of the distribution $f(M)$, i.e., the matrix where each entry gives us the probability of observing +1 when we sample that entry
- We obtain matching upper and lower bounds on the average Hellinger distance between $f(M)$ and $f(\widehat{M})$
- When $\lim _{\alpha \rightarrow \infty} L_{\alpha}<\infty$, we can recover the distribution $f(M)$ without any assumptions on $\|M\|_{\infty}$
- logistic model
- not probit model
- any model where the noise has heavy tails

Tiny Sketch of Proof of Upper Bound

Recall that we maximize the log-likelihood $F(X)$

- For a fixed matrix $X, \mathbb{E}[F(M)-F(X)]=c \cdot D(f(X) \| f(M))$
- Lemma: Let $K=\left\{X: \frac{1}{\alpha \alpha}\|X\|_{*} \leq \sqrt{r}\right\}$. With high probability, $\sup _{X \in K}|F(X)-\mathbb{E} F(X)| \leq \delta$
- By definition, $F(\widehat{M}) \geq F(M)$

$$
\begin{aligned}
0 & \geq F(M)-F(\widehat{M}) \\
& \geq \mathbb{E}[F(M)-F(\widehat{M})]-2 \delta \\
& =c \cdot D(f(\widehat{M}) \| f(M))-2 \delta
\end{aligned}
$$

- Thus, $D(f(\widehat{M}) \| f(M)) \leq \frac{2}{c} \delta$

Synthetic Simulations

$$
d=500 \quad m=.15 d^{2}
$$

MovieLens Data Set

- 100,000 movie ratings on a scale from 1 to 5
- Convert to binary outcomes by comparing each rating to the average rating in the data set
- Evaluate by checking if we predict the correct sign
- Training on 95,000 ratings and testing on remainder
- "standard" matrix completion: 60\% accuracy
1: 64\%
2: 56\%
3: 44\%
4: 65\%
5: 74\%
- 1-bit matrix completion: 73\% accuracy

1: 79\% 2: 73\%
3: 58\%
4: 75\%
5: 89\%

Conclusions

- 1-bit matrix completion is hard!
- What did you really expect?
- Sometimes 1 -bit is all we can get...
- We have algorithms that are near optimal
- Open questions
- Are there simpler/better/faster/stronger algorithms?
- What about 2.32-bit matrix completion?

Thank You!

