Professor Leach
Last Name: \qquad First Name:
Instructions. Print your name in the spaces above. Place a box around any answer. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad
1 of 2 . For $v_{s}=5 \mathrm{~V}, R_{1}=11 \mathrm{k} \Omega, R_{2}=1.1 \mathrm{k} \Omega$, and $g_{m}=1 / 20$:
(a) Use superposition, voltage division, current division, and Ohm's Law to solve for v_{1}.
(b) Use the values of v_{s} and v_{1} to solve for v_{2}.

$$
\begin{aligned}
& \mathrm{R}_{1}:=11000 \quad \mathrm{R}_{2}:=1100 \quad \mathrm{v}_{\mathrm{s}}:=5 \quad \mathrm{~g}_{\mathrm{m}}:=\frac{1}{20} \\
& \mathrm{v}_{1}=\mathrm{v}_{\mathrm{s}} \cdot \frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}-\mathrm{g}_{\mathrm{m}} \cdot \mathrm{v}_{1} \cdot \mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right) \\
& \mathrm{v}_{1}:=\mathrm{v}_{\mathrm{s}} \cdot \frac{\mathrm{R}_{1}}{1+\mathrm{g}_{\mathrm{m}} \cdot \mathrm{R}_{\mathrm{p} 2} \cdot \mathrm{R}_{1}, \mathrm{R}_{2}} \quad \mathrm{v}_{1}=0.089 \\
& \mathrm{v}_{2}:=\mathrm{v}_{\mathrm{s}}-\mathrm{v}_{1} \quad \mathrm{v}_{2}=4.911
\end{aligned}
$$

2 of 2 . (a) With the aid of a graph, illustrate how the value of the diode small-signal resistance is defined. [It is the reciprocal of the slope of the i_{D} versus v_{D} graph.]
(b) Draw and label the hybrid- π model of the BJT.

