ECE 3050 Analog Electronics Quiz 2

September 2, 2009

- 1 of 2. Given $V^+ = 22$ V, $V^- = -15$ V, $R_1 = 220$ k Ω , $R_2 = 22$ k Ω , $R_C = 12$ k Ω , $\alpha = 0.99$, $\beta = 99$, and $V_{BE} = 0.65$ V. (a) Solve for R_E for $I_C = 1.3$ mA.
 - (b) Verify that the BJT is biased in its active mode.

$$R_{1} + R_{C}$$

$$R_{2} + R_{C}$$

$$R_{2} + R_{E}$$

$$V^{-}$$

$$V_{p} := 22 \quad V_{n} := -15 \quad R_{1} := 220000 \quad R_{2} := 22000 \quad R_{C} := 12000$$

$$\alpha := 0.99 \quad \beta := 99 \quad V_{BE} := 0.65 \quad I_{C} := 0.0013$$

$$V_{BB} := V_{p} \cdot \frac{R_{2}}{R_{1} + R_{2}} \quad R_{BB} := R_{p2}(R_{1}, R_{2}) \quad V_{BB} = 2 \quad R_{BB} = 2 \cdot 10^{4}$$

$$V_{BB} - V_{n} = \frac{I_{C}}{\beta} \cdot R_{BB} + V_{BE} + \frac{I_{E}}{\alpha} \cdot R_{E}$$

$$R_{E} := \frac{V_{BB} - V_{n} - \frac{I_{C}}{\beta} \cdot R_{BB} - V_{BE}}{\frac{I_{C}}{\alpha}} \quad R_{E} = 1.225 \cdot 10^{4}$$

$$V_{CB} := (V_{p} - I_{C} \cdot R_{C}) - \left(V_{n} + \frac{I_{C}}{\alpha} \cdot R_{E}\right) \quad V_{CB} = 5.313$$

2 of 2. (a) The MOSFET drain current is given by i_D = K (v_{GS} - V_{TO})². If you are given i_D, there are two solutions to the equation for v_{GS}. What determines the correct one? [The solution for which v_{GS} > V_{TO}.]
(b) The gate-source loop bias equation for the MOSFET is V_{GG} - V_{SS} = V_{GS} + I_DR_{SS}. When it is used with the equation in part (a), show that this equation leads to a quadratic equation that must be solved for I_D. You do not have to solve the quadratic equation.

$$I_D R_{SS} + \frac{1}{\sqrt{K}} \sqrt{I_C} - (V_{GG} - V_{SS} - V_{TO}) = 0$$