Professor Leach Last Name:__First Name: \qquad
Instructions. Print your name in the spaces above. Place a box around any answer. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad
1 of 2 . Given $V^{+}=22 \mathrm{~V}, V^{-}=-15 \mathrm{~V}, R_{1}=220 \mathrm{k} \Omega, R_{2}=22 \mathrm{k} \Omega, R_{C}=12 \mathrm{k} \Omega, \alpha=0.99, \beta=99$, and $V_{B E}=0.65 \mathrm{~V}$.
(a) Solve for R_{E} for $I_{C}=1.3 \mathrm{~mA}$.
(b) Verify that the BJT is biased in its active mode.

$$
\begin{aligned}
& R_{1} \\
& \mathrm{~V}_{\mathrm{p}}:=22 \quad \mathrm{~V}_{\mathrm{n}}:=-15 \quad \mathrm{R}_{1}:=220000 \quad \mathrm{R}_{2}:=22000 \quad \mathrm{R}_{\mathrm{C}}:=12000 \\
& \alpha:=0.99 \quad \beta:=99 \quad \mathrm{~V}_{\mathrm{BE}}:=0.65 \quad \mathrm{I}_{\mathrm{C}}:=0.0013 \\
& \mathrm{~V}_{\mathrm{BB}}:=\mathrm{V}_{\mathrm{p}} \cdot \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{R}_{\mathrm{BB}}:=\mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right) \quad \mathrm{V}_{\mathrm{BB}}=2 \quad \mathrm{R}_{\mathrm{BB}}=2 \cdot 10^{4} \\
& \mathrm{~V}_{\mathrm{BB}^{-}} \mathrm{V}_{\mathrm{n}}=\frac{\mathrm{I}_{\mathrm{C}}}{\beta} \cdot \mathrm{R}_{\mathrm{BB}}+\mathrm{V}_{\mathrm{BE}}+\frac{\mathrm{I}_{\mathrm{E}}}{\alpha} \cdot \mathrm{R}_{\mathrm{E}} \\
& \mathrm{R}_{\mathrm{E}}:=\frac{\mathrm{V}_{\mathrm{BB}^{-}-\mathrm{V}_{\mathrm{n}}-\frac{\mathrm{I}_{\mathrm{C}}}{\beta} \cdot \mathrm{R}_{B B}-\mathrm{V}_{\text {BE }}}^{\frac{\mathrm{I}_{\mathrm{C}}}{\alpha}}}{R_{\mathrm{E}}=1.225 \cdot 10^{4}} \\
& \mathrm{~V}_{\mathrm{CB}}:=\left(\mathrm{V}_{\mathrm{p}}-\mathrm{I}_{\mathrm{C}} \cdot \mathrm{R}_{\mathrm{C}}\right)-\left(\mathrm{V}_{\mathrm{n}}+\frac{\mathrm{I}_{\mathrm{C}}}{\alpha} \cdot \mathrm{R}_{\mathrm{E}}\right) \quad \mathrm{V}_{\mathrm{CB}}=5.313
\end{aligned}
$$

2 of 2 . (a) The MOSFET drain current is given by $i_{D}=K\left(v_{G S}-V_{T O}\right)^{2}$. If you are given i_{D}, there are two solutions to the equation for $v_{G S}$. What determines the correct one? [The solution for which $v_{G S}>V_{T O}$.]
(b) The gate-source loop bias equation for the MOSFET is $V_{G G}-V_{S S}=V_{G S}+I_{D} R_{S S}$. When it is used with the equation in part (a), show that this equation leads to a quadratic equation that must be solved for I_{D}. You do not have to solve the quadratic equation.

$$
I_{D} R_{S S}+\frac{1}{\sqrt{K}} \sqrt{I_{C}}-\left(V_{G G}-V_{S S}-V_{T O}\right)=0
$$

