ECE 3050 Analog Electronics Quiz 3

September 9, 2009

Professor Leach
Last Name: \qquad First Name:
Instructions. Print your name in the spaces above. Place a box around any answer. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad
1 of 2 . For $V^{+}=+24 \mathrm{~V}, R_{1}=1 \mathrm{M} \Omega, R_{2}=1.5 \mathrm{M} \Omega, K=4 \times 10^{-4} \mathrm{~S}$, and $V_{T O}=1.5 \mathrm{~V}$, solve for R_{S} for $I_{D}=2.5 \mathrm{~mA}$. Reference equation: $i_{D}=K\left(v_{G S}-V_{T O}\right)^{2}$.

$$
\begin{aligned}
& \text { = } \\
& \mathrm{V}_{\mathrm{p}}:=24 \quad \mathrm{R}_{1}:=1000000 \quad \mathrm{R}_{2}:=1500000 \\
& K:=4 \cdot 10^{-4} \\
& \mathrm{~V}_{\text {TO }}:=1.5 \quad \mathrm{I}_{\mathrm{D}}:=0.0025 \\
& \mathrm{~V}_{\mathrm{GG}}:=\mathrm{V}_{\mathrm{p}} \cdot \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{R}_{\mathrm{GG}}:=\mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right) \quad \mathrm{V}_{\mathrm{GG}}=14.4 \quad \mathrm{R}_{\mathrm{GG}}=6 \cdot 10^{5} \\
& \mathrm{~V}_{\mathrm{GS}}:=\sqrt{\frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{~K}}}+\mathrm{V}_{\mathrm{TO}} \quad \mathrm{~V}_{\mathrm{GS}}=4 \\
& \mathrm{~V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{GS}}+\mathrm{I}_{\mathrm{D}} \cdot \mathrm{R}_{\mathrm{S}} \quad \quad \mathrm{R}_{\mathrm{S}}:=\frac{\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{GS}}}{\mathrm{I}_{\mathrm{D}}} \quad \mathrm{R}_{\mathrm{S}}=4.16 \cdot 10^{3}
\end{aligned}
$$

2 of 2 . The circuit on the left is the signal circuit for a CE amplifier. The two circuits on the right show the hybrid- π model for the circuit. For $R_{B}=2.2 \mathrm{k} \Omega, R_{C}=10 \mathrm{k} \Omega, I_{C}=1.5 \mathrm{~mA}$, and $V_{C E}=10 \mathrm{~V}$, solve for the voltage gain $A_{v}=v_{c} / v_{s}$. For the transistor, assume $\beta=100, V_{A}=75$, and $V_{T}=25 \mathrm{mV}$. Reference equations: $i_{c}^{\prime}=g_{m} v_{\pi}=\beta i_{b}=\alpha i_{e}^{\prime}, r_{\pi}=V_{T} / I_{B}, g_{m}=I_{C} / V_{T}, I_{C}=\beta I_{B}, r_{0}=\left(V_{A}+V_{C E}\right) / I_{C}$.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{B}}:=2200 \quad \mathrm{R}_{\mathrm{C}}:=10000 \quad \mathrm{I}_{\mathrm{C}}:=0.0015 \quad \mathrm{~V}_{\mathrm{CE}}:=10 \quad \beta:=100 \quad \mathrm{~V}_{\mathrm{T}}:=0.025 \\
& \mathrm{I}_{\mathrm{B}}:=\frac{\mathrm{I}_{\mathrm{C}}}{\beta} \quad \mathrm{I}_{\mathrm{B}}=1.5 \cdot 10^{-5} \quad \mathrm{~g}_{\mathrm{m}}:=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{T}}} \quad \mathrm{~g}_{\mathrm{m}}=0.06 \quad \mathrm{~V}_{\mathrm{A}}:=75 \\
& \mathrm{r}_{\pi}:=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{B}}} \quad \mathrm{r}_{\pi}=1.667 \cdot 10^{3} \quad \mathrm{r}_{0}:=\frac{\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{CE}}}{\mathrm{I}_{\mathrm{C}}} \quad \mathrm{r}_{0}=5.667 \cdot 10^{4} \quad \mathrm{v}_{\mathrm{S}}:=1 \\
& \mathrm{i}_{\mathrm{c}}:=\mathrm{v}_{\mathrm{s}} \cdot \frac{\mathrm{r}_{\pi}}{\mathrm{R}_{\mathrm{B}}+\mathrm{r}_{\pi}} \cdot \mathrm{g}_{\mathrm{m}} \quad \mathrm{i}^{\prime} \mathrm{c}=0.026 \quad \quad \mathrm{v}_{\mathrm{o} 1}:=-\mathrm{i}^{\prime} \mathrm{c}^{\prime} \cdot \mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{\mathrm{C}}, \mathrm{r}_{0}\right) \quad \mathrm{v}_{\mathrm{o} 1}=-219.828 \\
& \mathrm{i}_{\mathrm{b}}:=\frac{\mathrm{i}^{\prime} \mathrm{c}}{\beta} \quad \mathrm{i}_{\mathrm{b}}=2.586 \cdot 10^{-4} \quad \quad \mathrm{v}_{\mathrm{o} 2}:=-\beta \cdot \mathrm{i}_{\mathrm{b}} \cdot \mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{\mathrm{C}}, \mathrm{r}_{0}\right) \quad \mathrm{v}_{\mathrm{o} 2}=-219.828
\end{aligned}
$$

