ECE 3050 Analog Electronics Quiz 5

September 23, 2009

Professor Leach
Name
Instructions. Print your name in the space above. Place a box around your answer. Express each numerical answer as a decimal number. Honor Code Statement: I have neither given nor received help on this quiz. Initials

The figure shows a CB/CE amplifier. For each transistor, $r_{x}=100 \Omega, \beta=99, \alpha=0.99$, $I_{E}=1 \mathrm{~mA}, r_{i c}=100 \mathrm{k} \Omega$, and $V_{T}=25 \mathrm{mV}$. The circuit element values are $R_{S}=82 \Omega$, $R_{C 1}=12 \mathrm{k} \Omega, R_{E 2}=50 \Omega$, and $R_{C 2}=16 \mathrm{k} \Omega$. Reference equations: $g_{m}=I_{C} / V_{T}, r_{\pi}=V_{T} / I_{B}$, $r_{e}=V_{T} / I_{E}, i_{c}^{\prime}=g_{m} v_{\pi}=\beta i_{b}=\alpha i_{e}^{\prime}, r_{\pi}^{\prime}=r_{x}+r_{\pi}+(1+\beta) R_{t e}, r_{e}^{\prime}=\left(R_{t b}+r_{x}\right) /(1+\beta)+r_{e}$.
First express your answers in symbolic form. Then evaluate them numerically. Draw a box around your answers.

The following solutions are based on the simplified T model.
(a) Solve for $i_{c 1}^{\prime} / v_{s}$.

$$
i_{c 1}^{\prime}=\alpha i_{e 1}^{\prime}=\alpha \frac{-v_{s}}{R_{S}+r_{e 1}^{\prime}}=-9.167 \times 10^{-3} v_{s} \quad \Longrightarrow \quad \frac{i_{c 1}^{\prime}}{v_{s}}=-9.167 \times 10^{-3}
$$

(b) Solve for $v_{t b 2} / i_{c 1}^{\prime}$.

$$
v_{t b 2}=-i_{c 1}^{\prime} R_{C 1} \| r_{i c 1}=-10.71 \times 10^{3} i_{c 1}^{\prime} \quad \Longrightarrow \quad \frac{v_{t b 2}}{i_{c 1}^{\prime}}=-10.71 \times 10^{3}
$$

(c) Solve for $i_{c 2}^{\prime} / v_{t b 2}$.

$$
i_{c 2}^{\prime}=\alpha i_{e 2}^{\prime}=\alpha \frac{v_{t b 2}}{R_{E 2}+r_{e 2}^{\prime}}=5.406 \times 10^{-3} v_{t b 2} \quad \Longrightarrow \quad \frac{i_{c 2}^{\prime}}{v_{t b 2}}=5.406 \times 10^{-3}
$$

(d) Solve for $v_{o} / i_{c 2}^{\prime}$.

$$
v_{o}=-i_{c 2}^{\prime} R_{C 2} \| r_{i c 2}=-13.79 \times 10^{3} i_{c 2}^{\prime} \quad \Longrightarrow \quad \frac{v_{o}}{i_{c 2}^{\prime}}=-13.79 \times 10^{3}
$$

(e) Combine the above answers to solve for v_{o} / v_{s}.

$$
\frac{v_{o}}{v_{s}}=\frac{i_{c 1}^{\prime}}{v_{s}} \times \frac{v_{t b 2}}{i_{c 1}^{\prime}} \times \frac{i_{c 2}^{\prime}}{v_{t b 2}} \times \frac{v_{o}}{i_{c 2}^{\prime}}=-7323
$$

