ECE 3050 Analog Electronics Quiz 5

September 23, 2009

Professor Leach Name______ Instructions. Print your name in the space above. Place a box around your answer. Express each numerical answer as a decimal number. Honor Code Statement: I have neither given nor received help on this guiz. Initials ______

The figure shows a CB/CE amplifier. For each transistor, $r_x = 100 \Omega$, $\beta = 99$, $\alpha = 0.99$, $I_E = 1 \text{ mA}$, $r_{ic} = 100 \text{ k}\Omega$, and $V_T = 25 \text{ mV}$. The circuit element values are $R_S = 82 \Omega$, $R_{C1} = 12 \text{ k}\Omega$, $R_{E2} = 50 \Omega$, and $R_{C2} = 16 \text{ k}\Omega$. Reference equations: $g_m = I_C/V_T$, $r_\pi = V_T/I_B$, $r_e = V_T/I_E$, $i'_c = g_m v_\pi = \beta i_b = \alpha i'_e$, $r'_\pi = r_x + r_\pi + (1 + \beta) R_{te}$, $r'_e = (R_{tb} + r_x) / (1 + \beta) + r_e$. First express your answers in symbolic form. Then evaluate them numerically. Draw a box around your answers.

The following solutions are based on the simplified T model. (a) Solve for i'_{c1}/v_s .

$$i'_{c1} = \alpha i'_{e1} = \alpha \frac{-v_s}{R_s + r'_{e1}} = -9.167 \times 10^{-3} v_s \qquad \Longrightarrow \qquad \frac{i'_{c1}}{v_s} = -9.167 \times 10^{-3} v_s$$

(b) Solve for v_{tb2}/i'_{c1} .

$$v_{tb2} = -i'_{c1}R_{C1} \|r_{ic1} = -10.71 \times 10^3 i'_{c1} \implies \frac{v_{tb2}}{i'_{c1}} = -10.71 \times 10^3$$

(c) Solve for i'_{c2}/v_{tb2} .

$$i'_{c2} = \alpha i'_{e2} = \alpha \frac{v_{tb2}}{R_{E2} + r'_{e2}} = 5.406 \times 10^{-3} v_{tb2} \implies \frac{i'_{c2}}{v_{tb2}} = 5.406 \times 10^{-3} v_{tb2}$$

(d) Solve for v_o/i'_{c2} .

$$v_o = -i'_{c2}R_{C2} ||r_{ic2} = -13.79 \times 10^3 i'_{c2} \implies \frac{v_o}{i'_{c2}} = -13.79 \times 10^3$$

(e) Combine the above answers to solve for $v_o/v_s.$

$$\frac{v_o}{v_s} = \frac{i'_{c1}}{v_s} \times \frac{v_{tb2}}{i'_{c1}} \times \frac{i'_{c2}}{v_{tb2}} \times \frac{v_o}{i'_{c2}} = -7323$$