## ECE 3050 Analog Electronics Quiz 6

September 30, 2009

Professor Leach
Name
Instructions. Print your name in the space above. Place a box around your answers. Points will be subtracted if you do not express each numerical answer as a decimal number and if you do not put a box around answers. Honor Code Statement: I have neither given nor received help on this quiz. Initials

1. The figure shows the ac signal circuit for a differential amplifier. For each BJT, it is given that $\alpha=0.99, \beta=99, r_{x}=0, g_{m}=49.5 \mathrm{mS}, r_{\pi}=2 \mathrm{k} \Omega, r_{e}=20 \Omega, r_{0}=\infty$, $R_{B}=1 \mathrm{k} \Omega, R_{E}=70 \Omega, R_{Q}=50 \mathrm{k} \Omega$, and $R_{C}=12 \mathrm{k} \Omega$.
(a) Replace $v_{s 1}$ and $v_{s 2}$ with differential inputs. Solve for the differential gain $A_{v(d)}=$ $v_{o 1} / v_{i d}$.
(b) Replace $v_{s 1}$ and $v_{s 2}$ with common-mode inputs. Solve for the common-mode gain $A_{v(c m)}=v_{o 1} / v_{i c m}$.
(c) What is the common-mode rejection ratio?


Solutions on next page.
$\alpha:=0.99 \quad \beta:=99 \quad \mathrm{~g}_{\mathrm{m}}:=49.5 \cdot 10^{-3} \quad \mathrm{r}_{\pi}:=2000 \quad \mathrm{r}_{\mathrm{e}}:=20 \quad \mathrm{R}_{\mathrm{B}}:=1000$
$\mathrm{R}_{\mathrm{E}}:=70 \quad \mathrm{R}_{\mathrm{Q}}:=50000 \quad \mathrm{R}_{\mathrm{C}}:=12000 \quad \mathrm{r}^{\prime} \mathrm{e}:=\frac{\mathrm{R}_{\mathrm{B}}}{1+\beta}+\mathrm{r}_{\mathrm{e}} \quad \mathrm{r}^{\prime} \mathrm{e}^{2}=30$

You were expected to use the small-signal models to arrive at the following answers:
(a) $\mathrm{v}_{\mathrm{i1}}=\frac{\mathrm{v}_{\text {id }}}{2}$


$$
A_{v d}=\frac{v_{o 1}}{v_{i d}} \quad A_{v d}:=\frac{\frac{-\alpha}{2} \cdot R_{C}}{r_{e}^{\prime}+R_{E}} \quad A_{v d}=-59.4
$$

(b)
(b)


$$
A_{v c m}=\frac{v_{o 1}}{v_{i c m}} \quad A_{v c m}:=\frac{-\alpha \cdot R_{C}}{r_{e}^{\prime}+R_{E}+2 \cdot R_{Q}} \quad A_{v c m}=-0.119
$$

(c) $\quad \mathrm{CMRR}:=\left|\frac{\mathrm{A}_{\mathrm{vd}}}{\mathrm{A}_{\mathrm{vcm}}}\right| \quad \mathrm{CMRR}=500.5$

$$
\mathrm{CMRR}_{\mathrm{dB}}:=20 \cdot \log (\mathrm{CMRR}) \quad \mathrm{CMRR}_{\mathrm{dB}}=53.988
$$

