## ECE 3050 Analog Electronics Quiz 7

October 7, 2009

Professor Leach
Name
Instructions. Print your name in the space above. Place a box around your answers. Points will be subtracted if you do not express each numerical answer as a decimal number and if you do not put a box around answers. Honor Code Statement: I have neither given nor received help on this quiz. Initials $\qquad$
The diagram shows the ac signal circuit for a MOSFET amplifier. It is given that $R_{1}=$ $100 \mathrm{k} \Omega, R_{2}=1 \mathrm{k} \Omega, R_{3}=30 \mathrm{k} \Omega, K=0.4 \mathrm{mS}, V_{T O}=1.5 \mathrm{~V}, I_{D}=2.5 \mathrm{mV}, i_{D}=K\left(v_{G S}-V_{T O}\right)^{2}$, $r_{0}=\infty, g_{m}=2 \sqrt{K I_{D}}$, and $r_{s}=g_{m}^{-1}$.
(a) Solve for the small-signal voltage gain $A_{v}=v_{o} / v_{i}$.
(b) Solve for the input resistance looking into the $v_{i}$ node.
(c) Solve for the output resistance looking into the $v_{o}$ node.


$$
\begin{gathered}
A_{v}=\frac{i_{s 1}^{\prime}}{v_{i}} \times \frac{i_{s 2}^{\prime}}{i_{s 1}^{\prime}} \times \frac{i_{d 2}^{\prime}}{i_{s 2}^{\prime}} \times \frac{v_{o}}{i_{d 2}^{\prime}}=\frac{1}{r_{s 1}^{\prime}+r_{s 2}^{\prime} \| R_{2}} \times \frac{-R_{2}}{R_{2}+r_{s 2}^{\prime}} \times 1 \times\left(-R_{3}\right)=24 \\
r_{\text {in }}=\infty \quad r_{\text {out }}=R_{3}
\end{gathered}
$$

