ECE 3050 Analog Electronics Quiz 7

October 7, 2009

Professor Leach

Name_

Instructions. Print your name in the space above. Place a box around your answers. Points will be subtracted if you do not express each numerical answer as a decimal number and if you do not put a box around answers. **Honor Code Statement:** *I have neither given nor received help on this quiz.* Initials ______

The diagram shows the ac signal circuit for a MOSFET amplifier. It is given that $R_1 = 100 \text{ k}\Omega$, $R_2 = 1 \text{ k}\Omega$, $R_3 = 30 \text{ k}\Omega$, K = 0.4 mS, $V_{TO} = 1.5 \text{ V}$, $I_D = 2.5 \text{ mV}$, $i_D = K (v_{GS} - V_{TO})^2$, $r_0 = \infty$, $g_m = 2\sqrt{KI_D}$, and $r_s = g_m^{-1}$.

(a) Solve for the small-signal voltage gain $A_v = v_o/v_i$.

(b) Solve for the input resistance looking into the v_i node.

(c) Solve for the output resistance looking into the v_o node.

$$A_{v} = \frac{i'_{s1}}{v_{i}} \times \frac{i'_{s2}}{i'_{s1}} \times \frac{i'_{d2}}{i'_{s2}} \times \frac{v_{o}}{i'_{d2}} = \frac{1}{r'_{s1} + r'_{s2} ||R_{2}} \times \frac{-R_{2}}{R_{2} + r'_{s2}} \times 1 \times (-R_{3}) = 24$$
$$r_{in} = \infty \qquad r_{out} = R_{3}$$