ECE 3050 Analog Electronics Quiz 11

November 4, 2009

Professor Leach
Name
Instructions. Print your name in the space above. Place a box around your answers. Points will be subtracted if you do not express each numerical answer as a decimal number and if you do not put a box around answers. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad
1 of 2 . Given $V_{B}=2.6 \mathrm{~V}, V_{S A T}=12 \mathrm{~V}, R_{1}=4 \mathrm{k} \Omega$, and $R_{F}=33 \mathrm{k} \Omega$.
(a) Construct the plot of v_{O} versus v_{I}.

$$
\begin{aligned}
V_{A} & =-V_{S A T} \times \frac{R_{1}}{R_{1}+R_{F}}+V_{B} \times \frac{R_{F}}{R_{1}+R_{F}}=3.62 \mathrm{~V} \\
V_{B} & =+V_{S A T} \times \frac{R_{1}}{R_{1}+R_{F}}+V_{B} \times \frac{R_{F}}{R_{1}+R_{F}}=1.02 \mathrm{~V}
\end{aligned}
$$

For the graph, see Fig. 1.37 at
http://users.ece.gatech.edu/ ${ }^{\sim}$ mleach/ece3050/sp04/OpAmps01.pdf
(b) Sketch the graph of v_{O} versus t for $v_{I}(t)=6 \sin (\omega t)$.

2 of 2 . For $R_{1}=2 \mathrm{k} \Omega, R_{2}=6 \mathrm{k} \Omega, R_{3}=4 \mathrm{k} \Omega$, and $V_{1}=6 \mathrm{~V}$, solve for v_{O}.

