ECE 3050 Analog Electronics Quiz 12

November 11, 2009

Professor Leach
Name
Instructions. Print your name in the space above. Place a box around your answers. Points will be subtracted if you do not express each numerical answer as a decimal number and if you do not put a box around answers. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad
1 of 2 . On the log-log scales below, sketch the Bode "straight-line" magnitude plots for the transfer functions given.

$$
T_{1}(s)=5000 \frac{1+s / 300}{(1+s / 30)(1+s / 5000)} \quad T_{2}(s)=300 \frac{(s / 30)(1+s / 300)}{(1+s / 30)(1+s / 5000)}
$$

$\left|T_{1}(j \omega)\right|$ starts at 5000 , breaks to a slope of -1 at $\omega=30$, shelves at a slope of 0 at $\omega=300$ and a gain of 500 , and breaks to a slope of -1 at $\omega=5000$
$\left|T_{2}(j \omega)\right|$ starts at a slope of +1 , shelves at a slope of 0 at $\omega=30$ and a gain of 300 , breaks to a slope of +1 at $\omega=300$, and shelves at a slope of 0 at $\omega=5000$ and a gain of 5000 .

2 of 2 . (a) What is the gain of the circuit at dc, i.e. zero frequency. $R_{3} /\left(R_{1}+R_{3}\right)$
(b) What is the gain at infinite frequency? $\left(R_{2} \| R_{3}\right) /\left[R_{1}+\left(R_{2} \| R_{3}\right)\right]$
(c) Write the transfer function for V_{o} / V_{i}. It should be in standard time constant form, i.e. all pole and zero terms should be of the form $(1+\tau s)$, where τ is the time constant.

$$
\frac{V_{o}}{V_{i}}=\frac{R_{3}}{R_{1}+R_{3}} \frac{1+R_{2} C s}{1+\left[\left(R_{1} \| R_{3}\right)+R_{2}\right] C s}
$$

