ECE 3050 Analog Electronics Quiz 13

November 18, 2009

Professor Leach
Name
Instructions. Print your name in the space above. Place a box around your answers. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad
1 of 2. (a) What is the expression for the voltage gain V_{o} / V_{i} at very low frequencies? $V_{o} / V_{i}=$ $-\left(R_{2}+R_{3}\right) / R_{1}$
(b) What is the expression for the voltage gain V_{o} / V_{i} at very high frequencies? $V_{o} / V_{i}=$ $-R_{3} / R_{1}$
(c) Solve for the transfer function $T(s)=V_{o} / V_{i}$. Use the two-terminal impedance theorem to write

$$
T(s)=-\frac{R_{2}+R_{3}}{R_{1}} \frac{1+R_{2} \| R_{3} C s}{1+R_{2} C s}
$$

(d) What is the expression for the pole frequency of $T(s)$ in $\mathrm{rad} / \mathrm{s} ?\left(R_{2} C\right)^{-1}$
(e) What is the expression for the zero frequency of $T(s)$ in $\mathrm{rad} / \mathrm{s}$? $\left[\left(R_{2} \| R_{3}\right) C\right]^{-1}$
(f) Sketch and label the straight line Bode magnitude plot for $|T(j \omega)|$. Low pass shelving Bode plot.

2 of 2 . (a) What is the expression for the voltage gain V_{o} / V_{i} at very low frequencies? $1+R_{3} / R_{1}$
(b) What is the expression for the voltage gain V_{o} / V_{i} at very high frequencies? $1+\left(R_{2} \| R_{3}\right) / R_{1}$
(c) Solve for the transfer function $T(s)=V_{o} / V_{i}$.

$$
\frac{V_{o}}{V_{i}}=\left(1+\frac{R_{3}}{R_{1}}\right) \frac{1+\left(R_{2}+R_{1} \| R_{3}\right) C s}{1+\left(R_{2}+R_{3}\right) C s}
$$

(d) What is the expression for the pole frequency of $T(s)$ in $\mathrm{rad} / \mathrm{s}$? ${ }^{\left(R_{2}+R_{3}\right) C}-1$
(e) What is the expression for the zero frequency of $T(s)$ in $\mathrm{rad} / \mathrm{s}$? $\left[\left(R_{2}+R_{1} \| R_{3}\right) C\right]^{-1}$
(f) Sketch and label the straight line Bode magnitude plot for $|T(j \omega)|$. Low-pass shelving Bode plot.

