ECE 3050 Analog Electronics Quiz 14

November 25, 2009

Professor Leach
Name
Instructions. Print your name in the space above. Place a box around your answers. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad

1 of 2. (a) The block diagram of an oscillator is shown. For $s=j \omega$, what are the conditions on $A(s)$ and $b(s)$ for steady state oscillations? $A(j \omega) b(j \omega)=1 \angle 0^{\circ}$.
(b) If $A\left(\omega_{0}\right)=5 \angle 60^{\circ}$, what must be the phasor value of $b\left(j \omega_{0}\right)$ for steady-state oscillations at the frequency $\omega_{0} ? b\left(j \omega_{0}\right)=A^{-1}\left(j \omega_{0}\right)=0.2 L-60^{\circ}$

2 of 2. Draw the diagrams of circuits which can be used to realize the voltage-gain transfer functions given. It may be helpful to first draw the straight-line Bode magnitude plots. In the second through fourth transfer functions, assume that $\omega_{1}<\omega_{2}$. You do not have to label the circuit elements or supply values for them.
(a) $\frac{V_{o}}{V_{i}}=\frac{-5}{1+\left(s / \omega_{1}\right)}$
(b) $\frac{V_{o}}{V_{i}}=+5 \frac{1+\left(s / \omega_{2}\right)}{1+\left(s / \omega_{1}\right)}$
(c) $\frac{V_{o}}{V_{i}}=+5 \frac{1+\left(s / \omega_{1}\right)}{1+\left(s / \omega_{2}\right)}$
(d) $\frac{V_{o}}{V_{i}}=-5 \frac{\left(s / \omega_{1}\right)}{1+\left(s / \omega_{1}\right)} \times \frac{1}{1+\left(s / \omega_{2}\right)}$
(a) An inverting low-pass amplifier. An inverting op-amp amplifier with a capacitor in parallel with the feedback resistor R_{F}.
(b) A non-inverting low-pass shelving amplifier A non-inverting op-amp amplifier with a series $R C$ in parallel with the series feedback resistor R_{F}.
(c) A non-inverting high-pass shelving amplifier. A non-inverting op-amp amplifier with a series $R C$ in parallel with the shunt feedback resistor R_{1}.
(d) An inverting band-pass amplifier. An inverting op-amp amplifier with a capacitor C_{F} in parallel with the feedback resistor R_{F} and a series capacitor C_{1} in series with the input resistor R_{1}.

