ECE3050 Homework Set 1

1. For $V=18 \mathrm{~V}, R_{1}=39 \mathrm{k} \Omega, R_{2}=43 \mathrm{k} \Omega$, and $R_{3}=11 \mathrm{k} \Omega$, use Ohm's Law, voltage division, and current division to solve for $V_{1}, V_{2}, I_{1}, I_{2}$, and I_{3}.

$$
V_{1}=18 \frac{39 \mathrm{k} \Omega}{39 \mathrm{k} \Omega+43 \mathrm{k} \Omega \| 11 \mathrm{k} \Omega}=14.7 \mathrm{~V} \quad V_{2}=18 \frac{43 \mathrm{k} \Omega \| 11 \mathrm{k} \Omega}{39 \mathrm{k} \Omega+43 \mathrm{k} \Omega \| 11 \mathrm{k} \Omega}=3.30 \mathrm{~V}
$$

$$
I_{1}=\frac{18}{39 \mathrm{k} \Omega+43 \mathrm{k} \Omega \| 11 \mathrm{k} \Omega}=376.8 \mu \mathrm{~A} \quad I_{2}=\frac{11 \mathrm{k} \Omega}{43 \mathrm{k} \Omega+11 \mathrm{k} \Omega} I_{1}=76.8 \mu \mathrm{~A}
$$

$$
I_{3}=\frac{43 \mathrm{k} \Omega}{43 \mathrm{k} \Omega+11 \mathrm{k} \Omega} I_{1}=300 \mu \mathrm{~A}
$$

2. For $I=250 \mu \mathrm{~A}, R_{1}=100 \mathrm{k} \Omega, R_{2}=68 \mathrm{k} \Omega$, and $R_{3}=82 \mathrm{k} \Omega$, use Ohm's Law, voltage division, and current division to solve for I_{1}, I_{2}, and V_{3}.

$$
\begin{gathered}
I_{1}=250 \mu \mathrm{~A} \frac{68 \mathrm{k} \Omega+82 \mathrm{k} \Omega}{100 \mathrm{k} \Omega+68 \mathrm{k} \Omega+82 \mathrm{k} \Omega}=150 \mu \mathrm{~A} \\
I_{2}=250 \mu \mathrm{~A} \frac{100 \mathrm{k} \Omega}{100 \mathrm{k} \Omega+68 \mathrm{k} \Omega+82 \mathrm{k} \Omega}=100 \mu \mathrm{~A} \\
V_{3}=100 \mu \mathrm{~A} \times 82 \mathrm{k} \Omega=8.2 \mathrm{~V}
\end{gathered}
$$

3. It is given that $R_{1}=1 \mathrm{k} \Omega, A_{v}=10^{-4}, A_{i}=50$, and $R_{2}=40 \mathrm{k} \Omega$.

(a) With $i_{o}=0$, use superposition to write the equations for i_{1} and $v_{o(o c)}$. Solve the equations for $v_{o(o c)}$ as a function of v_{s}.

$$
i_{1}=\frac{v_{s}-A_{v} v_{o}}{R_{1}} \quad v_{o(o c)}=-A_{i} i_{1} R_{2}
$$

$$
v_{o(o c)}=\frac{-A_{i} \frac{R_{2}}{R_{1}}}{1-A_{i} A_{v} \frac{R_{2}}{R_{1}}} v_{s}=-2500 v_{s}
$$

(b) With $v_{o}=0$, use superposition to write the equations for i_{1} and $i_{o(s c)}$. Solve the equations for $i_{o(s c)}$ as a function of v_{s}.

$$
i_{o(s c)}=-\frac{A_{i} v_{s}}{R_{1}}=-0.05 v_{s}
$$

(c) Use the solutions for $v_{o(o c)}$ and $i_{o(s c)}$ to show that $r_{o u t}=50 \mathrm{k} \Omega$.
(d) Show that the Thévenin equivalent circuit seen looking into the output is a voltage source $v_{o(o c)}=-2500 v_{s}$ in series with a resistance $r_{o u t}=50 \mathrm{k} \Omega$.
(e) Show that the Norton equivalent circuit seen looking into the output is a current source $i_{o(s c)}=-0.05 v_{s}$ in parallel with a resistance $r_{\text {out }}=50 \mathrm{k} \Omega$.
(f) If a load resistor $R_{L}=20 \mathrm{k} \Omega$ is connected from the output node to ground, use both the Thévenin and the Norton equivalent circuits to show that $v_{o}=-714.3 v_{s}$ for both.
4. It is given that $R_{1}=10 \Omega, G_{m}=0.5 \mathrm{~S}, R_{2}=5 \Omega, R_{3}=50 \Omega$, and $A_{v}=4$.

(a) With $i_{o}=0$, use superposition to solve for $v_{o(o c)}$ as a function of v_{s}.

$$
v_{o(o c)}=\frac{R_{3}}{R_{2}+R_{3}} v_{s}+A_{v} v_{s} \frac{R_{2}}{R_{2}+R_{3}}=\frac{R_{3}+A_{v} R_{2}}{R_{2}+R_{3}} v_{s}=1.273 v_{s}
$$

(b) With $v_{o}=0$, use superposition to solve for $i_{o(s c)}$ as a function of v_{s}.

$$
i_{o(s c)}=\frac{v_{s}}{R_{2}}+\frac{A_{v} v_{s}}{R_{3}}=v_{s}\left(\frac{1}{R_{2}}+\frac{A_{v}}{R_{3}}\right)=0.28 v_{s}
$$

(c) Solve for $r_{\text {out }}$.

$$
r_{o u t}=\frac{v_{o(o c)}}{i_{o(s c)}}=4.545 \Omega
$$

(d) Show that the Thévenin equivalent circuit seen looking into the output is a voltage source $v_{o(o c)}=1.273 v_{s}$ in series with a resistance $r_{o u t}=4.545 \Omega$.
(e) Show that the Norton equivalent circuit seen looking into the output is a current source $i_{o(s c)}=0.28 v_{s}$ in parallel with a resistance $r_{\text {out }}=4.545 \Omega$.
(f) If a load resistor $R_{L}=5 \Omega$ is connected from the output node to ground, show $v_{o}=0.667 v_{s}$.
5. It is given that $g_{m}=0.025 \mathrm{~S}$ and $R_{1}=40 \mathrm{k} \Omega$.

(a) With the output terminals open-circuited, use superposition of v_{s} and $g_{m} v$ to write equations for $v_{O(o c)}$ and v. Solve the two equations for $v_{O(o c)}$ as a function of v_{S}.

$$
v_{O(o c)}=v_{S}+g_{m} v R_{1} \quad v=0-g_{m} v R_{1} \Longrightarrow v=0 \Longrightarrow v_{O(o c)}=v_{s}
$$

(b) For the output terminals short-circuited, use superposition of v_{S} and $g_{m} v$ to write equations for $i_{O(s c)}$ and v. Solve the two equations for $i_{O(s c)}$ as a function of v_{S}.

$$
i_{O(s c)}=\frac{v_{S}}{R_{1}}+g_{m} v \quad v=v_{S}-0 \Longrightarrow v=v_{S} \Longrightarrow i_{O(s c)}=v_{S}\left(\frac{1}{R_{1}}+g_{m}\right)=\frac{v_{S}}{39.96}
$$

(c) Solve for the Thévenin equivalent circuit looking into the output terminals.

$$
v_{O(o c)}=v_{S} \text { in series with } r_{o u t}=39.96 \Omega
$$

(d) Solve for the Norton equivalent circuit looking into the output terminals.

$$
i_{O(s c)}=\frac{v_{S}}{39.96} \text { in parallel with } r_{o u t}=39.96 \Omega
$$

6. It is given that $\beta=80, R_{1}=75 \mathrm{k} \Omega$, and $R_{2}=39 \mathrm{k} \Omega$.

(a) With the output terminals open-circuited, use superposition of v_{S} and βi to write equations for $v_{O(o c)}$ and i. Solve the two equations for $v_{O(o c)}$ as a function of v_{S} by eliminating i.

$$
v_{O(o c)}=0-\beta i R_{2} \quad i=\frac{-v_{S}}{R_{1}} \Longrightarrow v_{O(o c)}=\frac{\beta R_{2}}{R_{1}} v_{S}=41.6 v_{S} \mathrm{~V}
$$

(b) With the output terminals short-circuited, use superposition of v_{S} and βi to write equations for $i_{O(s c)}$ and i. Solve the two equations for $i_{O(s c)}$ as a function of v_{S} by eliminating i.

$$
i_{O(s c)}=0-\beta i \quad i=\frac{-v_{S}}{R_{1}} \Longrightarrow i_{O(o c)}=\frac{\beta}{R_{1}} v_{S}=1.067 v_{S} \mathrm{~mA}
$$

(c) Solve for the Thévenin equivalent circuit looking into the output terminals. $\left[v_{O(o c)}=\right.$ $41.6 v_{S}$ in series with $39 \mathrm{k} \Omega$]
(d) Solve for the Norton equivalent circuit looking into the output terminals. $\left[i_{O(s c)}=1.067 \times\right.$ $10^{-3} v_{S}$ in parallel with $39 \mathrm{k} \Omega$]
7. It is given that $g_{m}=0.002 \mathrm{~S}, R_{1}=100 \mathrm{k} \Omega$, and $R_{2}=1 \mathrm{M} \Omega$.

(a) With the output terminals open-circuited, solve for v as a function of i_{S} and $v_{O(o c)}$ as a function of v. Solve the two equations for $v_{O(o c)}$ as a function of i_{s} by eliminating v.

$$
v_{O(o c)}=-g_{m} v R_{2} \quad v=i_{S} R_{1} \Longrightarrow v_{O(o c)}=-g_{m} i_{S} R_{2} R_{1}=-2 \times 10^{8} i_{S}
$$

(b) With the output terminals short-circuited, solve for v as a function of i_{S} and $i_{O(s c)}$ as a function of v. Solve the two equations for $i_{O(s c)}$ as a function of i_{S} by eliminating v.

$$
i_{O(s c)}=-g_{m} v \quad v=i_{S} R_{1} \Longrightarrow i_{O(s c)}=-g_{m} i_{S} R_{1}=-200 i_{S}
$$

(c) Show that the Thévenin equivalent circuit looking into the output terminals is a voltage source $v_{O(o c)}=-2 \times 10^{8} i_{S}$ in series with a resistance $r_{o u t}=1 \mathrm{M} \Omega$]
(d) Show that the Norton equivalent circuit looking into the output terminals is a current source $i_{O(s c)}=-200 i_{S}$ in parallel with a resistance $r_{o u t}=1 \mathrm{M} \Omega$.
8. It is given that $R_{1}=3 \mathrm{k} \Omega, R_{2}=2 \mathrm{k} \Omega$, and $g_{m}=0.1$. This problem illustrates two solutions for the input resistance to the circuit. In one solution, the source is a voltage source. In the other it is a current source.

(a) Use superposition of v_{S} and $g_{m} v_{1}$ to solve for i_{S}.

$$
i_{S}=\frac{v_{S}}{R_{1}+R_{2}}-g_{m} v_{1} \frac{R_{2}}{R_{1}+R_{2}}
$$

(b) Use superposition of v_{S} and $g_{m} v_{1}$ to solve for v_{1}.

$$
v_{1}=v_{S} \frac{R_{1}}{R_{1}+R_{2}}-g_{m} v_{1} R_{1} \| R_{2} \Longrightarrow v_{1}=v_{S} \frac{R_{1}}{R_{1}+R_{2}} \times \frac{1}{1+g_{m} R_{1} \| R_{2}}
$$

(c) Solve the two equations for i_{S} as a function of v_{S} by eliminating v_{1}.

$$
\begin{aligned}
i_{S} & =\frac{v_{S}}{R_{1}+R_{2}}\left(1-\frac{g_{m} R_{2}}{R_{1}+R_{2}} \frac{R_{1}}{1+g_{m} R_{1} \| R_{2}}\right)=\frac{v_{S}}{R_{1}+R_{2}}\left(1-\frac{g_{m} R_{1} \| R_{2}}{1+g_{m} R_{1} \| R_{2}}\right) \\
& =\frac{v_{S}}{R_{1}+R_{2}} \frac{1}{1+g_{m} R_{1} \| R_{2}}=\frac{v_{S}}{605 \mathrm{k} \Omega}
\end{aligned}
$$

(d) Solve for the input resistance to the circuit.

$$
r_{i n}=\frac{v_{S}}{i_{S}}=605 \mathrm{k} \Omega
$$

(e) Replace v_{S} with an independent current source i_{S}. Repeat the problem to solve for $r_{i n}$. Which solution is simpler?

$$
\begin{gathered}
v_{S}=i_{S}\left(R_{1}+R_{2}\right)+g_{m} v_{1} R_{2} \quad v_{1}=i_{S} R_{1} \Longrightarrow v_{S}=i_{S}\left(R_{1}+R_{2}+g_{m} R_{1} R_{2}\right) \\
r_{i n}=\frac{v_{S}}{i_{S}}=R_{1}+R_{2}+g_{m} R_{1} R_{2}=605 \mathrm{k} \Omega
\end{gathered}
$$

9. The figure shows an amplifier equivalent circuit. It is given that $A_{i}=0.99, R_{S}=1 \mathrm{k} \Omega$, $R_{1}=25 \Omega, R_{2}=100 \Omega$, and $R_{3}=30 \mathrm{k} \Omega$.

(a) With $R_{L}=\infty$, use superposition of v_{s} and $A_{i} i_{\alpha}$ to show that $v_{o(o c)}$ and i_{α} are given by

$$
\begin{aligned}
v_{o(o c)} & =v_{s} \frac{R_{2}}{R_{S}+R_{1}+R_{2}}-A_{i} i_{\alpha}\left(R_{3}+\frac{R_{1}}{R_{S}+R_{1}+R_{2}} R_{2}\right) \\
= & \frac{v_{s}}{11.25}-29702.2 i_{\alpha} \\
i_{\alpha} & =\frac{v_{s}}{R_{S}+R_{1}+R_{2}}+A_{i} i_{\alpha} \frac{R_{S}+R_{2}}{R_{S}+R_{1}+R_{2}} \\
& =\frac{v_{s}}{1125}+\frac{i_{\alpha}}{1.03306}
\end{aligned}
$$

(b) Solve the equations to show that $v_{o(o c)}=-824.97 v_{s}$.
(c) With $R_{L}=0$, use superposition of v_{s} and $A_{i} i_{\alpha}$ to show that $i_{o(s c)}$ and i_{α} are given by

$$
\begin{aligned}
i_{o(s c)} & =\frac{v_{s}}{R_{S}+R_{1}+R_{2} \| R_{3}} \frac{R_{2}}{R_{2}+R_{3}}-A_{i} i_{\alpha}\left(1-\frac{R_{S}}{R_{S}+R_{1}+R_{2} \| R_{3}} \frac{R_{2}}{R_{2}+R_{3}}\right) \\
& =\frac{v_{s}}{338525}-\frac{i_{\alpha}}{1.01309}
\end{aligned}
$$

$$
\begin{aligned}
i_{\alpha} & =\frac{v_{s}}{R_{S}+R_{1}+R_{2} \| R_{3}}+A_{i} i_{\alpha} \frac{R_{S}}{R_{S}+R_{1}+R_{2} \| R_{3}} \\
& =\frac{v_{s}}{1124.67}-\frac{i_{\alpha}}{1.13603}
\end{aligned}
$$

(d) Solve the equations to show that $i_{o(s c)}=-v_{s} / 136.486$.
(e) Solve for $r_{o u t}=v_{o(o c)} / i_{o(s c)} \cdot\left[r_{o u t}=112.597 \mathrm{k} \Omega\right]$
(f) With $R_{L}=10 \mathrm{k} \Omega$, solve for v_{o}. $\left[v_{o}=-67.2913 v_{s}\right]$
10. For the circuit shown, it is given that $i_{s}=4 \mathrm{~mA}, R_{1}=2 \mathrm{k} \Omega, R_{2}=1 \mathrm{k} \Omega, R_{3}=9 \mathrm{k} \Omega$, and $g_{m}=0.005 \mathrm{~S}$.

(a) Use superposition to solve for $v_{o(o c)}$. Express your answer in symbolic form.

$$
\begin{array}{r}
v_{1}=i_{s}\left[R_{1} \|\left(R_{2}+R_{3}\right)\right]+g_{m} v_{1} \frac{R_{2}}{R_{1}+R_{2}+R_{3}} R_{1} \\
\quad=i_{s} \frac{R_{1} \|\left(R_{2}+R_{3}\right)}{1-g_{m} R_{1} \|\left(R_{2}+R_{3}\right)+g_{m} \frac{R_{3}}{R_{1}+R_{2}+R_{3}} R_{1}} \\
v_{o(o c)}=i_{s} \frac{R_{1}}{R_{1}+R_{2}+R_{3}} R_{3}-g_{m} v_{1} \frac{R_{2}}{R_{1}+R_{2}+R_{3}} R_{3}
\end{array}
$$

(b) Use superposition to solve for $i_{o(s c)}$. Express your answer in symbolic form.

$$
\begin{gathered}
v_{1}=\left(i_{s}+g_{m} v_{1}\right) R_{1} \| R_{2}=i_{s} \frac{R_{1} \| R_{2}}{1-g_{m} R_{1} \| R_{2}} \\
i_{o(s c)}=i_{s} \frac{R_{1}}{R_{1}+R_{2}}-g_{m} v_{1} \frac{R_{2}}{R_{1}+R_{2}}
\end{gathered}
$$

(c) Solve for the Thévenin equivalent circuit seen looking into the output terminal. Express your answer in numerical form.

$$
v_{t h}=v_{o(o c)}=-144 \mathrm{~V} \quad R_{t h}=\frac{v_{o(o c)}}{i_{o(s c)}}=-3150 \Omega
$$

(d) Solve for the Norton equivalent circuit seen looking into the output terminal. Express your answer in numerical form.

$$
i_{\text {nor }}=i_{o(s c)}=4.571 \mathrm{~mA} \quad R_{n o r}=\frac{v_{o(o c)}}{i_{o(s c)}}=-3150 \Omega
$$

(e) If a load resistor $R_{l}=9 \mathrm{k} \Omega$ is connected to the output, what is the load voltage?

$$
v_{L}=v_{t h} \frac{R_{L}}{R_{t h}+R_{L}} \stackrel{o r}{=} i_{\text {nor }} R_{\text {nor }} \| R_{L}=57.6 \mathrm{~V}
$$

11.

(a) For the circuit of figure (a), show that $i_{b}=(1-\alpha) i_{e}^{\prime} \quad i_{e}^{\prime}=\frac{v_{t b}-v_{e}}{(1-\alpha) R_{t b}+r_{e}} \quad i_{0}=\frac{v_{c}-v_{e}}{r_{0}} \quad i_{c}=\alpha i_{e}^{\prime}+i_{0} \quad i_{e}=i_{e}^{\prime}+i_{0}$
(b) For the circuit of figure (b), show that i_{e}^{\prime}, i_{e}, and i_{c} are the same as those in figure (a) provided r_{e}^{\prime} is given by

$$
r_{e}^{\prime}=(1-\alpha) R_{t b}+r_{e}
$$

12.

(a) For the circuit of figure (a), use superposition of $v_{c}, \alpha i_{e}^{\prime}, v_{t b}$, and $v_{t e}$ to show that

$$
\begin{gathered}
i_{c}=\frac{v_{c}}{r_{0}+r_{e}^{\prime} \| R_{t e}}+\alpha i_{e}^{\prime}-\frac{v_{t b}}{r_{e}^{\prime}+R_{t e} \| r_{0}} \frac{R_{t e}}{R_{t e}+r_{0}}-\frac{v_{t e}}{R_{t e}+r_{e}^{\prime} \| r_{0}} \frac{r_{e}^{\prime}}{r_{e}^{\prime}+r_{0}} \\
i_{e}^{\prime}=\frac{v_{t b}}{r_{e}^{\prime}+R_{t e} \| r_{0}}-\frac{v_{t e}}{R_{t e}+r_{e}^{\prime} \| r_{0}} \frac{r_{0}}{r_{0}+r_{e}^{\prime}}-\frac{v_{c}}{r_{0}+r_{e}^{\prime} \| R_{t e}} \frac{R_{t e}}{R_{t e}+r_{0}}
\end{gathered}
$$

(b) Substitute the i_{e}^{\prime} into the i_{c} equation to show that

$$
\begin{aligned}
i_{c}= & \frac{v_{t b}}{r_{e}^{\prime}+R_{t e} \| r_{0}}\left(\alpha-\frac{R_{t e}}{R_{t e}+r_{0}}\right)-\frac{v_{t e}}{R_{t e}+r_{e}^{\prime} \| r_{0}} \frac{\alpha r_{0}+r_{e}^{\prime}}{r_{0}+r_{e}^{\prime}} \\
& +\frac{v_{c}}{r_{0}+r_{e}^{\prime} \| R_{t e}}\left(1-\frac{\alpha R_{t e}}{r_{e}^{\prime}+R_{t e}}\right)
\end{aligned}
$$

(c) Show that the circuit of figure (b) gives the same value for i_{c} provided

$$
\begin{gathered}
i_{c}=G_{m b} v_{t b}-G_{m e} v_{t e}+\frac{v_{c}}{r_{i c}} \quad G_{m b}=\frac{1}{r_{e}^{\prime}+R_{t e} \| r_{0}}\left(\alpha-\frac{R_{t e}}{R_{t e}+r_{0}}\right) \\
G_{m e}=\frac{1}{R_{t e}+r_{e}^{\prime} \| r_{0}} \frac{\alpha r_{0}+r_{e}^{\prime}}{r_{0}+r_{e}^{\prime}} \quad r_{i c}=\frac{r_{0}+r_{e}^{\prime} \| R_{t e}}{1-\frac{\alpha R_{t e}}{r_{e}^{\prime}+R_{t e}}}
\end{gathered}
$$

(d) If β is sufficiently large, show that $G_{m b}=G_{m e}=G_{m}$, where G_{m} is given by

$$
G_{m}=\frac{1}{r_{e}^{\prime}+R_{t e}}
$$

13.

(a)
(a) For the circuit of figure (a), use superposition of $v_{t b}, i_{e}$, and αi_{e}^{\prime}, to show that

$$
\begin{gathered}
v_{e}=v_{t b} \frac{r_{0}+R_{t c}}{r_{e}^{\prime}+r_{0}+R_{t c}}-i_{e}\left[r_{e}^{\prime} \|\left(r_{0}+R_{t c}\right)\right]-\alpha i_{e}^{\prime} \frac{R_{t c} r_{e}^{\prime}}{R_{t c}+r_{0}+r_{e}^{\prime}} \\
i_{e}^{\prime}=\frac{v_{t b}-v_{e}}{r_{e}^{\prime}}
\end{gathered}
$$

(b) Eliminate i_{e}^{\prime} between the equations to show that

$$
v_{e}\left(1-\frac{\alpha R_{t c}}{R_{t c}+r_{0}+r_{e}^{\prime}}\right)=v_{t b} \frac{r_{0}+(1-\alpha) R_{t c}}{r_{0}+r_{e}^{\prime}+R_{t c}}-i_{e}\left[r_{e}^{\prime} \|\left(r_{0}+R_{t c}\right)\right]
$$

(c) Show that the above equation simplifies to

$$
v_{e}=v_{t b} \frac{r_{0}+(1-\alpha) R_{t c}}{r_{0}+r_{e}^{\prime}+(1-\alpha) R_{t c}}-i_{e} \frac{r_{e}^{\prime}\left(r_{0}+R_{t c}\right)}{r_{e}^{\prime}+r_{0}+(1-\alpha) R_{t c}}
$$

(d) Show that the circuit of figure (b) gives the same value for v_{2} provided

$$
v_{e(o c)}=v_{t b} \frac{r_{0}+(1-\alpha) R_{t c}}{r_{0}+r_{e}^{\prime}+(1-\alpha) R_{t c}} \quad r_{i e}=\frac{r_{e}^{\prime}\left(r_{0}+R_{t c}\right)}{r_{0}+r_{e}^{\prime}+(1-\alpha) R_{t c}}
$$

(e) If r_{0} is sufficiently large, show that the above answers reduce to

$$
v_{e(o c)}=v_{t b} \quad r_{i e}=r_{e}^{\prime}
$$

14.

(a) For the circuit of figure (a), use superposition of $v_{t e}, i_{b}$, and βi_{b} to show that

$$
v_{b}=v_{t e} \frac{r_{0}+R_{t c}}{R_{t e}+r_{0}+R_{t c}}+i_{b}\left[r_{\pi}+R_{t e} \|\left(r_{0}+R_{t c}\right)\right]+\beta i_{b} \frac{r_{0} R_{t e}}{r_{0}+R_{t e}+R_{t c}}
$$

(b) Show that the equation for v_{b} simplifies to

$$
v_{b}=v_{t e} \frac{r_{0}+R_{t c}}{r_{0}+R_{t e}+R_{t c}}+i_{b}\left[r_{\pi}+R_{t e} \frac{(1+\beta) r_{0}+R_{t c}}{r_{0}+R_{t e}+R_{t c}}\right]
$$

(c) Show that the circuit of figure (b) gives the same value for v_{b} provided

$$
v_{b(o c)}=v_{t e} \frac{r_{0}+R_{t c}}{r_{0}+R_{t e}+R_{t c}} \quad r_{i b}=r_{\pi}+R_{t e} \frac{(1+\beta) r_{0}+R_{t c}}{r_{0}+R_{t e}+R_{t c}}
$$

(d) If r_{0} is sufficiently large, show that the above answers reduce to

$$
v_{b(o c)}=v_{t e} \quad r_{i b}=r_{\pi}+(1+\beta) R_{t e}
$$

