ECE3050 Homework Set 2

1. A diode has the parameters $I_{S}=10 \mathrm{fA}, n=2$, and $V_{T}=25 \mathrm{mV}$.
(a) Calculate r_{d} for $V_{D}=0.6 \mathrm{~V}$.

$$
r_{d}=\frac{n V_{T}}{I_{D}+I_{S}}=\frac{n V_{T} e^{-V_{D} / n V_{T}}}{I_{S}}=30.72 \mathrm{M} \Omega
$$

(b) Calculate r_{d} for $V_{D}=0 \mathrm{~V}$.

$$
r_{d}=\frac{n V_{T}}{I_{S}}=5 \times 10^{12} \Omega
$$

(c) At what voltage does r_{d} exceed $10^{15} \Omega$?

$$
V_{D}=n V_{T} \ln \left(\frac{n V_{T}}{I_{S} r_{d}}\right)=-0.265 \mathrm{~V}
$$

2. A diode current-controlled attenuator circuit is shown. It is given that $R=20 \mathrm{k} \Omega$. The diode parameters are $n=2$ and $V_{T}=0.025 \mathrm{~V}$.

(a) Calculate the bias current which will provide a small-signal attenuation of 20 dB , i.e. $v_{o} / v_{s}=0.1$.

$$
I=\frac{2 n V_{T}}{R}\left[\left(\frac{v_{o}}{v_{s}}\right)^{-1}-1\right]=45 \mu \mathrm{~A}
$$

(b) If the current is halved, what is the new attenuation? $(-14.8 \mathrm{~dB})$. (c) If the current is doubled, what is the new attenuation? $(-25.6 \mathrm{~dB})$
3. A diode has the current $I_{D 1}=1 \mathrm{~mA}$ for $V_{D 1}=0.55 \mathrm{~V}$ and $I_{D 2}=2 \mathrm{~mA}$ for $V_{D 2}=0.58 \mathrm{~V}$. If $I_{S} \ll I_{D 1}$, determine the ideality factor or emission coefficient n and the saturation current I_{S}.

$$
\begin{aligned}
n & =\frac{V_{D 2}-V_{D 1}}{V_{T} \ln \left(I_{D 2} / I_{D 1}\right)}=1.73 \\
I_{S} & =\frac{I_{D 1}}{\exp \left(V_{D 1} / n V_{T}\right)}=\frac{I_{D 2}}{\exp \left(V_{D 2} / n V_{T}\right)}=3.03 \mathrm{nA}
\end{aligned}
$$

4. The diagram shows a zener diode regulator. It is given that $V_{1}=35 \mathrm{~V}$. The diode has the zener voltage $V_{Z}=24 \mathrm{~V}$. The load resistance varies between the limits $500 \Omega \leq R_{L} \leq 10 \mathrm{k} \Omega$.

(a) Calculate R_{1} if I_{Z} is to have a value that is no smaller than 10 mA . Note that I_{1} is a constant once R_{1} is determined and $I_{1}=I_{Z}+I_{L}$. Thus the minimum value of I_{Z} occurs when I_{L} is a maximum (when R_{L} is a minimum) because this makes I_{Z} have the smallest value.

$$
R_{1}=\frac{35 \mathrm{~V}-24 \mathrm{~V}}{0.01 \mathrm{~A}+24 \mathrm{~V} / 500 \Omega}=190 \Omega
$$

(b) What is the power dissipation in R_{1} and the maximum power dissipation in the zener diode? Note that I_{1} is a constant and $I_{1}=I_{Z}+I_{L}$. Thus the maximum dissipation in the zener diode occurs when I_{L} is its smallest value because this makes I_{Z} have the largest value.

$$
P_{1}=\frac{(35 \mathrm{~V}-24 \mathrm{~V})^{2}}{190 \Omega}=0.637 \mathrm{~W} \quad P_{Z \max }=24 \mathrm{~V}\left(\frac{35 \mathrm{~V}-24 \mathrm{~V}}{190 \Omega}-\frac{24 \mathrm{~V}}{10 \mathrm{k} \Omega}\right)=1.33 \mathrm{~W}
$$

5. Calculate the values of β and I_{S} for the transistor shown if $V_{C B}=V_{B E}=0.7 \mathrm{~V}, I_{B}=0.2 \mathrm{~mA}$, and $I_{E}=10 \mathrm{~mA}$.

Figure 1:

$$
\beta=\frac{10 \mathrm{~mA}-0.2 \mathrm{~mA}}{0.2 \mathrm{~mA}}=49 \quad I_{S}=\frac{9.8 \times 10^{-3}}{\exp (0.7 / 0.025)}=6.78 \times 10^{-15} \mathrm{~A}
$$

6. Calculate the values of β and I_{S} for the transistor shown if $V_{E B}=V_{B C}=0.7 \mathrm{~V}, I_{B}=50 \mu \mathrm{~A}$, and $I_{C}=2.5 \mathrm{~mA}$.

$$
\beta=\frac{2.5 \mathrm{~mA}}{50 \mu \mathrm{~A}}=50 \quad I_{S}=\frac{2.5 \times 10^{-3}}{\exp (0.7 / 0.025)}=1.73 \times 10^{-15} \mathrm{~A}
$$

7. Calculate the collector, emitter, and base currents if $V^{+}=3.3 \mathrm{~V}, V_{E E}=-3.3 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}$, $R_{E}=47 \mathrm{k} \Omega$, and $\beta=90$.

$$
\begin{gathered}
I_{E}=\frac{-0.7 \mathrm{~V}-(-3.3 \mathrm{~V})}{47 \mathrm{k} \Omega}=55.3 \mu \mathrm{~A} \quad I_{B}=\frac{55.3 \mu \mathrm{~A}}{91}=0.608 \mu \mathrm{~A} \\
I_{C}=I_{E}-I_{B}=54.7 \mu \mathrm{~A}
\end{gathered}
$$

8. An npn transistor is operated in the active mode with a base current of $3 \mu \mathrm{~A}$. It is found that $I_{C}=240 \mu \mathrm{~A}$ for $V_{C E}=5 \mathrm{~V}$ and $I_{C}=265 \mu \mathrm{~A}$ for $V_{C E}=10 \mathrm{~V}$. What are the values of β_{0} and V_{A} for this transistor? $\left[\beta_{0}=71.7, V_{A}=43.1 \mathrm{~V}\right]$
9. A BJT has the parameters $\beta_{0}=75, V_{A}=100 \mathrm{~V}$, and $V_{C E}=10 \mathrm{~V}$.
(a) Calculate I_{C} for $r_{\pi}=10 \mathrm{k} \Omega$.

$$
I_{B}=\frac{V_{T}}{r_{\pi}}=2.5 \mu \mathrm{~A} \quad I_{C}=\beta_{0}\left(1+\frac{V_{C E}}{V_{A}}\right) I_{B}=0.2063 \mathrm{~mA}
$$

(b) Calculate the values of g_{m} and r_{0}.

$$
g_{m}=\frac{I_{C}}{V_{T}}=\frac{1}{121.2} \quad r_{0}=\frac{V_{A}+V_{C E}}{I_{C}}=533.3 \mathrm{k} \Omega
$$

(c) Calculate α and r_{e}.

$$
\begin{gathered}
\alpha=\frac{\beta}{1+\beta}=\frac{\beta_{0}\left(1+\frac{V_{C E}}{V_{A}}\right)}{1+\beta_{0}\left(1+\frac{V_{C E}}{V_{A}}\right)}=0.9880 \\
r_{e}=\frac{V_{T}}{I_{E}} \stackrel{o r}{=} \frac{V_{T}}{(1+\beta) I_{B}} \stackrel{o r}{=} \frac{r_{\pi}}{1+\beta_{0}\left(1+\frac{V_{C E}}{V_{A}}\right)}=119.8 \Omega
\end{gathered}
$$

10. The output characteristics of a BJT are shown. (a) Determine β_{0} and $V_{A} . \quad\left[\beta_{0}=120\right.$, $V_{A}=30 \mathrm{~V}$] (b) Calculate β at $i_{B}=4 \mu \mathrm{~A}$ and $V_{C E}=5 \mathrm{~V}$. [135] (c) Calculate β at $i_{B}=8 \mu \mathrm{~A}$ and $V_{C E}=15 \mathrm{~V}$. [225]

