ECE3050 Homework Set 2

1. A diode has the parameters $I_S = 10$ fA, n = 2, and $V_T = 25$ mV. (a) Calculate r_d for $V_D = 0.6$ V.

$$r_d = \frac{nV_T}{I_D + I_S} = \frac{nV_T e^{-V_D/nV_T}}{I_S} = 30.72 \,\mathrm{M}\Omega$$

(b) Calculate r_d for $V_D = 0$ V.

$$r_d = \frac{nV_T}{I_S} = 5 \times 10^{12} \,\Omega$$

(c) At what voltage does r_d exceed $10^{15} \Omega$?

$$V_D = nV_T \ln\left(\frac{nV_T}{I_S r_d}\right) = -0.265 \,\mathrm{V}$$

2. A diode current-controlled attenuator circuit is shown. It is given that $R = 20 \text{ k}\Omega$. The diode parameters are n = 2 and $V_T = 0.025 \text{ V}$.

(a) Calculate the bias current which will provide a small-signal attenuation of 20 dB, i.e. $v_o/v_s = 0.1$.

$$I = \frac{2nV_T}{R} \left[\left(\frac{v_o}{v_s} \right)^{-1} - 1 \right] = 45 \,\mu\text{A}$$

(b) If the current is halved, what is the new attenuation? (-14.8 dB). (c) If the current is doubled, what is the new attenuation? (-25.6 dB)

3. A diode has the current $I_{D1} = 1 \text{ mA}$ for $V_{D1} = 0.55 \text{ V}$ and $I_{D2} = 2 \text{ mA}$ for $V_{D2} = 0.58 \text{ V}$. If $I_S \ll I_{D1}$, determine the ideality factor or emission coefficient n and the saturation current I_S .

$$n = \frac{V_{D2} - V_{D1}}{V_T \ln (I_{D2}/I_{D1})} = 1.73$$
$$I_S = \frac{I_{D1}}{\exp (V_{D1}/nV_T)} = \frac{I_{D2}}{\exp (V_{D2}/nV_T)} = 3.03 \,\mathrm{nA}$$

4. The diagram shows a zener diode regulator. It is given that $V_1 = 35$ V. The diode has the zener voltage $V_Z = 24$ V. The load resistance varies between the limits $500 \Omega \le R_L \le 10 \text{ k}\Omega$.

(a) Calculate R_1 if I_Z is to have a value that is no smaller than 10 mA. Note that I_1 is a constant once R_1 is determined and $I_1 = I_Z + I_L$. Thus the minimum value of I_Z occurs when I_L is a maximum (when R_L is a minimum) because this makes I_Z have the smallest value.

$$R_1 = \frac{35 \,\mathrm{V} - 24 \,\mathrm{V}}{0.01 \,\mathrm{A} + 24 \,\mathrm{V} / 500 \,\Omega} = 190 \,\Omega$$

(b) What is the power dissipation in R_1 and the maximum power dissipation in the zener diode? Note that I_1 is a constant and $I_1 = I_Z + I_L$. Thus the maximum dissipation in the zener diode occurs when I_L is its smallest value because this makes I_Z have the largest value.

$$P_{1} = \frac{(35 \text{ V} - 24 \text{ V})^{2}}{190 \Omega} = 0.637 \text{ W} \qquad P_{Z \max} = 24 \text{ V} \left(\frac{35 \text{ V} - 24 \text{ V}}{190 \Omega} - \frac{24 \text{ V}}{10 \text{ k}\Omega}\right) = 1.33 \text{ W}$$

5. Calculate the values of β and I_S for the transistor shown if $V_{CB} = V_{BE} = 0.7 \text{ V}$, $I_B = 0.2 \text{ mA}$, and $I_E = 10 \text{ mA}$.

Figure 1:

$$\beta = \frac{10 \,\mathrm{mA} - 0.2 \,\mathrm{mA}}{0.2 \,\mathrm{mA}} = 49 \qquad I_S = \frac{9.8 \times 10^{-3}}{\exp\left(0.7/0.025\right)} = 6.78 \times 10^{-15} \,\mathrm{A}$$

6. Calculate the values of β and I_S for the transistor shown if $V_{EB} = V_{BC} = 0.7 \text{ V}$, $I_B = 50 \,\mu\text{A}$, and $I_C = 2.5 \,\text{mA}$.

$$V_{EB} = I_B$$

$$V_{BC} = I_C$$

$$\beta = \frac{2.5 \text{ mA}}{50 \,\mu\text{A}} = 50 \qquad I_S = \frac{2.5 \times 10^{-3}}{\exp\left(0.7/0.025\right)} = 1.73 \times 10^{-15} \text{ A}$$

7. Calculate the collector, emitter, and base currents if $V^+ = 3.3$ V, $V_{EE} = -3.3$ V, $V_{BE} = 0.7$ V, $R_E = 47$ k Ω , and $\beta = 90$.

$$I_E = \frac{-0.7 \,\mathrm{V} - (-3.3 \,\mathrm{V})}{47 \,\mathrm{k}\Omega} = 55.3 \,\mu\mathrm{A} \qquad I_B = \frac{55.3 \,\mu\mathrm{A}}{91} = 0.608 \,\mu\mathrm{A}$$
$$I_C = I_E - I_B = 54.7 \,\mu\mathrm{A}$$

- 8. An npn transistor is operated in the active mode with a base current of $3 \mu A$. It is found that $I_C = 240 \,\mu A$ for $V_{CE} = 5 \,\mathrm{V}$ and $I_C = 265 \,\mu A$ for $V_{CE} = 10 \,\mathrm{V}$. What are the values of β_0 and V_A for this transistor? [$\beta_0 = 71.7$, $V_A = 43.1 \,\mathrm{V}$]
- 9. A BJT has the parameters $\beta_0 = 75$, $V_A = 100$ V, and $V_{CE} = 10$ V. (a) Calculate I_C for $r_{\pi} = 10$ kΩ.

$$I_B = \frac{V_T}{r_{\pi}} = 2.5 \,\mu\text{A}$$
 $I_C = \beta_0 \left(1 + \frac{V_{CE}}{V_A}\right) I_B = 0.2063 \,\text{mA}$

(b) Calculate the values of g_m and r_0 .

$$g_m = \frac{I_C}{V_T} = \frac{1}{121.2}$$
 $r_0 = \frac{V_A + V_{CE}}{I_C} = 533.3 \,\mathrm{k\Omega}$

(c) Calculate α and r_e .

$$\alpha = \frac{\beta}{1+\beta} = \frac{\beta_0 \left(1 + \frac{V_{CE}}{V_A}\right)}{1+\beta_0 \left(1 + \frac{V_{CE}}{V_A}\right)} = 0.9880$$
$$r_e = \frac{V_T}{I_E} \stackrel{or}{=} \frac{V_T}{(1+\beta) I_B} \stackrel{or}{=} \frac{r_\pi}{1+\beta_0 \left(1 + \frac{V_{CE}}{V_A}\right)} = 119.8\,\Omega$$

10. The output characteristics of a BJT are shown. (a) Determine β_0 and V_A . [$\beta_0 = 120$, $V_A = 30$ V] (b) Calculate β at $i_B = 4 \,\mu$ A and $V_{CE} = 5$ V. [135] (c) Calculate β at $i_B = 8 \,\mu$ A and $V_{CE} = 15$ V. [225]

