ECE3050 Homework Set 3

1. (a)Write the bias equation and solve for I_{C} and $V_{C B}$ for the values $V^{+}=18 \mathrm{~V}, R_{E}=1 \mathrm{k} \Omega$, $R_{1}=130 \mathrm{k} \Omega, R_{2}=36 \mathrm{k} \Omega, R_{C}=2.4 \mathrm{k} \Omega, V_{B E}=0.7 \mathrm{~V}$, and $\beta=99$. (b) Is the BJT biased in the active mode? $\left[I_{C}=2.474 \mathrm{~mA}, V_{C B}=8.863 \mathrm{~V}\right]$

2. Add a second npn transistor to the circuit of problem 1 as shown below. (a) Show that $I_{C 1}$ does not change. (b) Show that $V_{B B 2}=V^{+}-I_{C 1} R_{C}$ and $R_{B B 2}=R_{C}$. (c) For $R_{3}=1 \mathrm{k} \Omega$, and the same $V_{B E}$ and β as in problem 1, write the bias equation for the second transistor and solve for $I_{E 2}$. (c) Solve for $V_{C B}$ for both transistors and verify they are in the active mode. $\left[I_{E 2}=11.10 \mathrm{~mA}, V_{C B 2}=6.204 \mathrm{~V}, V_{C B 1}=8.597 \mathrm{~V}\right]$

3. (a) Show that

$$
\begin{array}{ll}
V_{B B}=V^{+} \frac{R_{2}}{R_{1}+R_{2}+R_{C}}-I_{C} \frac{R_{C}}{R_{C}+R_{1}+R_{2}} \times R_{2} & R_{B B}=\left(R_{1}+R_{C}\right) \| R_{2} \\
V_{C C}=V^{+} \frac{R_{1}+R_{2}}{R_{C}+R_{1}+R_{2}}-I_{B} \frac{R_{2}}{R_{C}+R_{1}+R_{2}} \times R_{C} & R_{C C}=R_{C} \|\left(R_{1}+R_{2}\right)
\end{array}
$$

(b) For $\beta=99$ and $\beta=\infty$ and $R_{1}=10 \mathrm{k} \Omega, R_{2}=47 \mathrm{k} \Omega, R_{C}=1.5 \mathrm{k} \Omega, R_{E}=2 \mathrm{k} \Omega$, $V_{B E}=0.7 \mathrm{~V}$, and $V^{+}=9 \mathrm{~V}$, write the bias equation and solve for I_{C} and $V_{C B}$. Verify that the BJT is biased in the active mode. $\left[\beta=99: I_{C}=1.968 \mathrm{~mA}\right.$ and $V_{C B}=1.194 \mathrm{~V}, \beta=\infty$: $\left.I_{C}=2.025 \mathrm{~mA}, V_{C B}=1.019 \mathrm{~V}\right]$

