ECE3050 Homework Set 6

The figures show a common-emitter amplifier, a common-collector amplifier, and a common-base amplifier. For each circuit, it is given that $R_{tb} = 1 \text{ k}\Omega$, $R_{te} = 100 \Omega$, and $R_{tc} = 10 \text{ k}\Omega$. The transistors have the values $I_E = 1.5 \text{ mA}$, $V_T = 25 \text{ mV}$, $\beta = 99$, $r_x = 50 \Omega$, and $r_0 = \infty$.

- 1. For each transistor, show that $g_m = 59.4 \text{ mS}$, $r_{\pi} = 1.667 \text{ k}\Omega$, $\alpha = 0.99$, and $r_e = 16.67 \Omega$.
- 2. For the common-emitter amplifier of Figure (a):
 - (a) Replace the BJT with the π model. Label the controlled source in the collector i'_c , the base current i'_c/β , and the emitter current i'_c/α . Let the voltage across r_{π} be written $v_{\pi} = i'_c/g_m$. Write a loop equation around the base-emitter loop and solve for i'_c . Use the circuit to show that

$$\frac{i'_{c}}{v_{tb}} = \frac{1}{\frac{R_{tb} + r_{x}}{\beta} + \frac{1}{g_{m}} + \frac{R_{te}}{\alpha}} = 7.785 \,\mathrm{mS}$$
$$\frac{v_{o}}{v_{tb}} = \frac{-R_{tc}}{\frac{R_{tb} + r_{x}}{\beta} + \frac{1}{g_{m}} + \frac{R_{te}}{\alpha}} = -77.85$$

Label the base current i_b and the emitter current $(1 + \beta) i_b$. Write the loop equation and show that

$$r_{in} = \frac{v_{tb}}{i_b} = R_{tb} + r_x + r_\pi + (1+\beta) R_{te} = 12.72 \,\mathrm{k}\Omega$$

Show that

$$r_{out} = R_{tc} = 10 \,\mathrm{k}\Omega$$

(b) Replace the BJT with the T model. Label the controlled source in the collector i'_c , the base current i'_c/β , and the emitter current i'_c/α . Write a loop equation around the base-emitter loop and solve for i'_c . Use the circuit to show that

$$\frac{i_c'}{v_{tb}} = \frac{1}{\frac{R_{tb} + r_x}{\beta} + \frac{r_e + R_{te}}{\alpha}} = 7.785 \,\mathrm{mS}$$

$$\frac{v_o}{v_{tb}} = \frac{-R_{tc}}{\frac{R_{tb} + r_x}{\beta} + \frac{r_e + R_{te}}{\alpha}} = -77.85$$

Label the base current i_b and the emitter current $(1 + \beta) i_b$. Write the loop equation and show that

$$r_{in} = \frac{v_{tb}}{i_b} = R_{tb} + r_x + (1+\beta) \left(r_e + R_{te} \right) = 12.72 \,\mathrm{k}\Omega$$

Show that

$$r_{out} = R_{tc} = 10 \,\mathrm{k}\Omega$$

- (c) Show that the simplified T model and simplified π model give the same answers for v_o/v_{tb} and r_{out} .
- 3. For the common-collector amplifier of Figure (b):
 - (a) Replace the BJT with the π model. Label the controlled source in the collector i'_c , the base current $i'_e/(1+\beta)$, and the emitter current i'_e . Write a loop equation around the base-emitter loop and solve for i'_e . Use the circuit to show that

$$\frac{i'_e}{v_{tb}} = \frac{1}{\frac{R_{tb} + r_x + r_\pi}{1 + \beta} + R_{te}} = 7.864 \,\mathrm{mS}$$
$$\frac{v_o}{v_{tb}} = \frac{R_{te}}{\frac{R_{tb} + r_x + r_\pi}{1 + \beta} + R_{te}} = 0.786$$

Label the base current i_b and the emitter current $(1 + \beta) i_b$. Write the loop equation and show that

$$r_{in} = \frac{v_{tb}}{i_b} = R_{tb} + r_x + r_\pi + (1+\beta) R_{te} = 12.72 \,\mathrm{k}\Omega$$

The output resistance can be written $r_{out} = R_{te} || r_{ie}$, where r_{ie} is the resistance seen looking up into the emitter. This can be solved for as the ratio of the open-circuit output voltage with $R_{te} = \infty$ to the short-circuit output current with $R_{te} = 0$. Show that r_{ie} is given by

$$r_{ie} = \frac{v_{o(oc)}}{i_{o(sc)}} = \frac{v_{o}|_{R_{te}=\infty}}{\frac{v_{o}}{R_{te}}\Big|_{R_{te}=0}} = \frac{R_{tb} + r_{x} + r_{\pi}}{1 + \beta} = 27.17\,\Omega$$

and that r_{out} is

$$r_{out} = R_{te} \| r_{ie} = 21.36 \,\Omega$$

(b) Replace the BJT with the T model. Label the controlled source in the collector i'_c , the base current $i'_e/(1+\beta)$, and the emitter current i'_e . Write a loop equation around the base-emitter loop and solve for i'_e . Use the circuit to show that

$$\frac{i'_e}{v_{tb}} = \frac{1}{\frac{R_{tb} + r_x}{1 + \beta} + r_e + R_{te}} = 7.864 \,\mathrm{mS}$$

$$\frac{v_o}{v_{tb}} = \frac{R_{te}}{\frac{R_{tb} + r_x}{1 + \beta} + r_e + R_{te}} = 0.786$$

Label the base current i_b and the emitter current $(1 + \beta) i_b$. Write the loop equation and show that

$$r_{in} = \frac{v_{tb}}{i_b} = R_{te} + r_x + (1+\beta) \left(r_e + R_{te} \right) = 12.72 \,\mathrm{k}\Omega$$

The output resistance can be written $r_{out} = R_{te} || r_{ie}$, where r_{ie} is the resistance seen looking up into the emitter. This can be solved for as the ratio of the open-circuit voltage with $R_{te} = \infty$ to the short-circuit current with $R_{te} = 0$. Show that r_{ie} is given by

$$r_{ie} = \frac{v_{o(oc)}}{i_{o(sc)}} = \frac{|v_o|_{R_{te}=\infty}}{\frac{|v_o|_{R_{te}=\infty}}{|R_{te}|_{R_{te}=0}}} = \frac{R_{tb} + r_x}{1 + \beta} + r_e = 27.17\,\Omega$$

and that r_{out} is

$$r_{out} = R_{te} \| r_{ie} = 21.36 \,\Omega$$

- (c) Show that the simplified T model gives the same answers for v_o/v_{tb} and r_{out} . Note that the simplified π model is not convenient because the v_o node does not appear in the circuit.
- 4. For the common-base amplifier of Figure (c):
 - (a) Replace the BJT with the π model. Label the controlled source in the collector i'_c , the base current i'_b , and the emitter current $i'_e = i'_c/\alpha$. Let the voltage across r_{π} be written $v_{\pi} = i'_c/g_m$. Write a loop equation around the base-emitter loop and solve for i'_c to show that

$$\frac{i'_{c}}{v_{tb}} = \frac{-1}{\frac{R_{tb} + r_{x} + r_{\pi}}{\beta} + \frac{R_{te}}{\alpha}} = 7.785 \,\mathrm{mS}$$
$$\frac{v_{o}}{v_{te}} = \frac{R_{tc}}{\frac{R_{tb} + r_{x} + r_{\pi}}{\beta} + \frac{R_{te}}{\alpha}} = 77.85$$

Label the base current $i'_e/(1+\beta)$ and the emitter current i'_e . Write the loop equation and show that

$$r_{in} = \frac{v_{te}}{-i'_e} = \frac{R_{te} + r_x + r_\pi}{1+\beta} + R_{te} = 127.2\,\Omega$$

Show that

$$r_{out} = R_{tc} = 10 \,\mathrm{k}\Omega$$

(b) Replace the BJT with the T model. Label the controlled source in the collector i'_c , the base current i'_c/β , and the emitter current i'_c/α . Write a loop equation around the base-emitter loop and solve for i'_e . Use the circuit to show that

$$\frac{i_c'}{v_{te}} = \frac{-1}{\frac{R_{tb} + r_x}{\beta} + \frac{r_e + R_{te}}{\alpha}} = 7.785 \,\mathrm{mS}$$

$$\frac{v_o}{v_{te}} = \frac{R_{tc}}{\frac{R_{tb} + r_x}{\beta} + \frac{r_e + R_{te}}{\alpha}} = 77.85$$

Label the base current $i'_e/(1+\beta)$ and the emitter current i'_e . Write the loop equation and show that $r_e = -\frac{P_e}{2} + r_e$

$$r_{in} = \frac{v_{te}}{-i'_e} = \frac{R_{te} + r_x}{1 + \beta} + r_e + R_{te} = 127.2\,\Omega$$

Show that

$$r_{out} = R_{tc} = 10 \,\mathrm{k}\Omega$$

(c) Show that the simplified T model and the simplified π model give the same answers.