ECE3050 Homework Set 6

The figures show a common-emitter amplifier, a common-collector amplifier, and a common-base amplifier. For each circuit, it is given that $R_{t b}=1 \mathrm{k} \Omega, R_{t e}=100 \Omega$, and $R_{t c}=10 \mathrm{k} \Omega$. The transistors have the values $I_{E}=1.5 \mathrm{~mA}, V_{T}=25 \mathrm{mV}, \beta=99, r_{x}=50 \Omega$, and $r_{0}=\infty$.

1. For each transistor, show that $g_{m}=59.4 \mathrm{mS}, r_{\pi}=1.667 \mathrm{k} \Omega, \alpha=0.99$, and $r_{e}=16.67 \Omega$.
2. For the common-emitter amplifier of Figure (a):
(a) Replace the BJT with the π model. Label the controlled source in the collector i_{c}^{\prime}, the base current i_{c}^{\prime} / β, and the emitter current i_{c}^{\prime} / α. Let the voltage across r_{π} be written $v_{\pi}=i_{c}^{\prime} / g_{m}$. Write a loop equation around the base-emitter loop and solve for i_{c}^{\prime}. Use the circuit to show that

$$
\begin{gathered}
\frac{i_{c}^{\prime}}{v_{t b}}=\frac{1}{\frac{R_{t b}+r_{x}}{\beta}+\frac{1}{g_{m}}+\frac{R_{t e}}{\alpha}}=7.785 \mathrm{mS} \\
\frac{v_{o}}{v_{t b}}=\frac{-R_{t c}}{\frac{R_{t b}+r_{x}}{\beta}+\frac{1}{g_{m}}+\frac{R_{t e}}{\alpha}}=-77.85
\end{gathered}
$$

Label the base current i_{b} and the emitter current $(1+\beta) i_{b}$. Write the loop equation and show that

$$
r_{i n}=\frac{v_{t b}}{i_{b}}=R_{t b}+r_{x}+r_{\pi}+(1+\beta) R_{t e}=12.72 \mathrm{k} \Omega
$$

Show that

$$
r_{\text {out }}=R_{t c}=10 \mathrm{k} \Omega
$$

(b) Replace the BJT with the T model. Label the controlled source in the collector i_{c}^{\prime}, the base current i_{c}^{\prime} / β, and the emitter current i_{c}^{\prime} / α. Write a loop equation around the base-emitter loop and solve for i_{c}^{\prime}. Use the circuit to show that

$$
\frac{i_{c}^{\prime}}{v_{t b}}=\frac{1}{\frac{R_{t b}+r_{x}}{\beta}+\frac{r_{e}+R_{t e}}{\alpha}}=7.785 \mathrm{mS}
$$

$$
\frac{v_{o}}{v_{t b}}=\frac{-R_{t c}}{\frac{R_{t b}+r_{x}}{\beta}+\frac{r_{e}+R_{t e}}{\alpha}}=-77.85
$$

Label the base current i_{b} and the emitter current $(1+\beta) i_{b}$. Write the loop equation and show that

$$
r_{i n}=\frac{v_{t b}}{i_{b}}=R_{t b}+r_{x}+(1+\beta)\left(r_{e}+R_{t e}\right)=12.72 \mathrm{k} \Omega
$$

Show that

$$
r_{\text {out }}=R_{t c}=10 \mathrm{k} \Omega
$$

(c) Show that the simplified T model and simplified π model give the same answers for $v_{o} / v_{t b}$ and $r_{o u t}$.
3. For the common-collector amplifier of Figure (b):
(a) Replace the BJT with the π model. Label the controlled source in the collector i_{c}^{\prime}, the base current $i_{e}^{\prime} /(1+\beta)$, and the emitter current i_{e}^{\prime}. Write a loop equation around the base-emitter loop and solve for i_{e}^{\prime}. Use the circuit to show that

$$
\begin{gathered}
\frac{i_{e}^{\prime}}{v_{t b}}=\frac{1}{\frac{R_{t b}+r_{x}+r_{\pi}}{1+\beta}+R_{t e}}=7.864 \mathrm{mS} \\
\frac{v_{o}}{v_{t b}}=\frac{R_{t e}}{\frac{R_{t b}+r_{x}+r_{\pi}}{1+\beta}+R_{t e}}=0.786
\end{gathered}
$$

Label the base current i_{b} and the emitter current $(1+\beta) i_{b}$. Write the loop equation and show that

$$
r_{i n}=\frac{v_{t b}}{i_{b}}=R_{t b}+r_{x}+r_{\pi}+(1+\beta) R_{t e}=12.72 \mathrm{k} \Omega
$$

The output resistance can be written $r_{o u t}=R_{t e} \| r_{i e}$, where $r_{i e}$ is the resistance seen looking up into the emitter. This can be solved for as the ratio of the open-circuit output voltage with $R_{t e}=\infty$ to the short-circuit output current with $R_{t e}=0$. Show that $r_{i e}$ is given by

$$
r_{i e}=\frac{v_{o(o c)}}{i_{o(s c)}}=\frac{\left.v_{o}\right|_{R_{t e}=\infty}}{\left.\frac{v_{o}}{R_{t e}}\right|_{R_{t e}=0}}=\frac{R_{t b}+r_{x}+r_{\pi}}{1+\beta}=27.17 \Omega
$$

and that $r_{\text {out }}$ is

$$
r_{o u t}=R_{t e} \| r_{i e}=21.36 \Omega
$$

(b) Replace the BJT with the T model. Label the controlled source in the collector i_{c}^{\prime}, the base current $i_{e}^{\prime} /(1+\beta)$, and the emitter current i_{e}^{\prime}. Write a loop equation around the base-emitter loop and solve for i_{e}^{\prime}. Use the circuit to show that

$$
\frac{i_{e}^{\prime}}{v_{t b}}=\frac{1}{\frac{R_{t b}+r_{x}}{1+\beta}+r_{e}+R_{t e}}=7.864 \mathrm{mS}
$$

$$
\frac{v_{o}}{v_{t b}}=\frac{R_{t e}}{\frac{R_{t b}+r_{x}}{1+\beta}+r_{e}+R_{t e}}=0.786
$$

Label the base current i_{b} and the emitter current $(1+\beta) i_{b}$. Write the loop equation and show that

$$
r_{i n}=\frac{v_{t b}}{i_{b}}=R_{t e}+r_{x}+(1+\beta)\left(r_{e}+R_{t e}\right)=12.72 \mathrm{k} \Omega
$$

The output resistance can be written $r_{o u t}=R_{t e} \| r_{i e}$, where $r_{i e}$ is the resistance seen looking up into the emitter. This can be solved for as the ratio of the open-circuit voltage with $R_{t e}=\infty$ to the short-circuit current with $R_{t e}=0$. Show that $r_{i e}$ is given by

$$
r_{i e}=\frac{v_{o(o c)}}{i_{o(s c)}}=\frac{\left.v_{o}\right|_{R_{t e}=\infty}}{\left.\frac{v_{o}}{R_{t e}}\right|_{R_{t e}=0}}=\frac{R_{t b}+r_{x}}{1+\beta}+r_{e}=27.17 \Omega
$$

and that $r_{\text {out }}$ is

$$
r_{o u t}=R_{t e} \| r_{i e}=21.36 \Omega
$$

(c) Show that the simplified T model gives the same answers for $v_{o} / v_{t b}$ and $r_{\text {out }}$. Note that the simplified π model is not convenient because the v_{o} node does not appear in the circuit.
4. For the common-base amplifier of Figure (c):
(a) Replace the BJT with the π model. Label the controlled source in the collector i_{c}^{\prime}, the base current i_{b}^{\prime}, and the emitter current $i_{e}^{\prime}=i_{c}^{\prime} / \alpha$. Let the voltage across r_{π} be written $v_{\pi}=i_{c}^{\prime} / g_{m}$. Write a loop equation around the base-emitter loop and solve for i_{c}^{\prime} to show that

$$
\begin{gathered}
\frac{i_{c}^{\prime}}{v_{t b}}=\frac{-1}{\frac{R_{t b}+r_{x}+r_{\pi}}{\beta}+\frac{R_{t e}}{\alpha}}=7.785 \mathrm{mS} \\
\frac{v_{o}}{v_{t e}}=\frac{R_{t c}}{\frac{R_{t b}+r_{x}+r_{\pi}}{\beta}+\frac{R_{t e}}{\alpha}}=77.85
\end{gathered}
$$

Label the base current $i_{e}^{\prime} /(1+\beta)$ and the emitter current i_{e}^{\prime}. Write the loop equation and show that

$$
r_{i n}=\frac{v_{t e}}{-i_{e}^{\prime}}=\frac{R_{t e}+r_{x}+r_{\pi}}{1+\beta}+R_{t e}=127.2 \Omega
$$

Show that

$$
r_{\text {out }}=R_{t c}=10 \mathrm{k} \Omega
$$

(b) Replace the BJT with the T model. Label the controlled source in the collector i_{c}^{\prime}, the base current i_{c}^{\prime} / β, and the emitter current i_{c}^{\prime} / α. Write a loop equation around the base-emitter loop and solve for i_{e}^{\prime}. Use the circuit to show that

$$
\frac{i_{c}^{\prime}}{v_{t e}}=\frac{-1}{\frac{R_{t b}+r_{x}}{\beta}+\frac{r_{e}+R_{t e}}{\alpha}}=7.785 \mathrm{mS}
$$

$$
\frac{v_{o}}{v_{t e}}=\frac{R_{t c}}{\frac{R_{t b}+r_{x}}{\beta}+\frac{r_{e}+R_{t e}}{\alpha}}=77.85
$$

Label the base current $i_{e}^{\prime} /(1+\beta)$ and the emitter current i_{e}^{\prime}. Write the loop equation and show that

$$
r_{i n}=\frac{v_{t e}}{-i_{e}^{\prime}}=\frac{R_{t e}+r_{x}}{1+\beta}+r_{e}+R_{t e}=127.2 \Omega
$$

Show that

$$
r_{\text {out }}=R_{t c}=10 \mathrm{k} \Omega
$$

(c) Show that the simplified T model and the simplified π model give the same answers.

