ECE3050 Homework Set 7

1. For the CE amplifier shown, let $R_{S}=1 \mathrm{k} \Omega, R_{1}=300 \mathrm{k} \Omega, R_{2}=150 \mathrm{k} \Omega, R_{3}=50 \Omega, R_{C}=$ $4.3 \mathrm{k} \Omega, R_{E}=5.6 \mathrm{k} \Omega, R_{L}=20 \mathrm{k} \Omega, V^{+}=15 \mathrm{~V}, V^{-}=-15 \mathrm{~V}, V_{B E}=0.65 \mathrm{~V}, \beta=99$, $r_{x}=20 \Omega, r_{0}=50 \mathrm{k} \Omega$, and $V_{T}=25 \mathrm{mV}$.
(a) Show that $I_{E}=1.417 \mathrm{~mA}$ and $V_{C B}=15.386 \mathrm{~V}$.
(b) Use the r_{0} approximations to show that $v_{o} / v_{s}=-43.74, r_{o u t}=4.169 \mathrm{k} \Omega$, and $r_{i n}=$ $6.315 \mathrm{k} \Omega$.
(c) Show that the clipping levels are $v_{O}^{+}=4.964 \mathrm{~V}$ and $v_{O}^{-}=-15.62 \mathrm{~V}$.
(d) Show that the emitter current which results in symmetrical clipping is $I_{E}=2.222 \mathrm{~mA}$.
(e) Show that the clipping levels for $I_{E}=2.222 \mathrm{~mA}$ are $v_{O}^{+}=-v_{O}^{-}=7.786 \mathrm{~V}$.

2. For the CC amplifier example shown, let $R_{s}=1 \mathrm{k} \Omega, R_{1}=300 \mathrm{k} \Omega, R_{2}=150 \mathrm{k} \Omega, R_{E}=5.6 \mathrm{k} \Omega$, $R_{L}=1 \mathrm{k} \Omega, V^{+}=15 \mathrm{~V}, V^{-}=-15 \mathrm{~V}, V_{B E}=0.65 \mathrm{~V}, \beta=99, r_{x}=20 \Omega, r_{0}=50 \mathrm{k} \Omega$, $V_{\text {CEsat }}=0.2 \mathrm{~V}$, and $V_{T}=25 \mathrm{mV}$. In the ac signal circuit, combine r_{0} in parallel with R_{E} from the emitter to ground. This can be done because $R_{t c}=0$, which puts r_{0} in parallel with R_{E}.
(a) Show that $I_{E}=1.417 \mathrm{~mA}, V_{C B}=21.417 \mathrm{~V}$.
(b) Show that $v_{o} / v_{s}=0.958, r_{\text {out }}=27.596 \Omega$, and $r_{\text {in }}=46.01 \mathrm{k} \Omega$.
(c) Show that the clipping levels are $v_{O}^{+}=3.31 \mathrm{~V}$ and $v_{O}^{-}=-1.20 \mathrm{~V}$.
(d) Show that the emitter current which results in symmetrical clipping is $I_{E}=2.661 \mathrm{~mA}$.
(e) Show that the clipping levels for $I_{E}=2.661 \mathrm{~mA}$ are $v_{O}^{+}=-v_{O}^{-}=2.257 \mathrm{~V}$.

3. For the CB amplifier shown, let $R_{s}=50 \Omega, R_{1}=300 \mathrm{k} \Omega, R_{2}=150 \mathrm{k} \Omega, R_{C}=4.3 \mathrm{k} \Omega$, $R_{E}=5.6 \mathrm{k} \Omega, R_{L}=20 \mathrm{k} \Omega, V^{+}=15 \mathrm{~V}, V^{-}=-15 \mathrm{~V}, V_{B E}=0.65 \mathrm{~V}, \beta=99, r_{x}=20 \Omega$, $r_{0}=50 \mathrm{k} \Omega$, and $V_{T}=25 \mathrm{mV}$.
(a) Show that $I_{E}=1.417 \mathrm{~mA}$ and $V_{C B}=15.386 \mathrm{~V}$.
(b) Use the r_{0} approximations to show that $v_{o} / v_{s}=50.552, r_{\text {out }}=4.202 \mathrm{k} \Omega$, and $r_{i n}=$ 17.79Ω.

