ECE3050 - Assignment 14

1. The figure shows a CS amplifier with a current-mirror active load.

(a) If the r_{0} approximations are used, show that the small-signal short-circuit output current is given by

$$
i_{o(s c)}=-\frac{v_{i}}{1+\chi_{1}} \frac{1}{r_{s 1}^{\prime}+R_{S}}=\frac{g_{m 1}}{1+g_{m 1}\left(1+\chi_{1}\right) R_{S}} v_{i}
$$

(b) Show that the small-signal output resistance is given by

$$
r_{o u t}=r_{i d 1}\left\|r_{02}=\left[r_{01}\left(1+\frac{R_{S}}{r_{s 1}^{\prime}}\right)+R_{S}\right]\right\| r_{02}
$$

(c) Show that the small-signal open-circuit voltage is given by

$$
v_{o(o c)}=i_{o(s c)} r_{o u t}=-\frac{g_{m 1}}{1+g_{m 1}\left(1+\chi_{1}\right) R_{S}}\left[r_{01}\left(1+\frac{R_{S}}{r_{s 1}^{\prime}}\right)+R_{S}\right] \| r_{02} \times v_{i}
$$

2. For the CS amplifier of Problem 1, each MOSFET has the parameters $K_{0}=0.002 \mathrm{~A} / \mathrm{V}^{2}$, $V_{T O}=1.4 \mathrm{~V}, \lambda=0.02 \mathrm{~V}^{-1}, \gamma=1.5 \mathrm{~V}^{1 / 2}$, and $\varphi=0.6 \mathrm{~V}$. It is given that $V^{+}=10 \mathrm{~V}$, $V^{-}=-10 \mathrm{~V}, I_{\text {ref }}=1 \mathrm{~mA}, R_{S}=200 \Omega$.
(a) Use the equation $I_{D}=K_{0}\left(1+\lambda V_{S D}\right)\left(V_{S G}-V_{T O}\right)^{2}$ to show that $V_{S G 3}=2.09 \mathrm{~V}$. Note that $V_{S D 3}=V_{S G 3}$.
(b) Use the equation $I_{D}=K_{0}\left(1+\lambda V_{S D}\right)\left(V_{S G}-V_{T O}\right)^{2}$ to show that $I_{D 2}=1.15 \mathrm{~mA}$. Note that $V_{S G 2}=V_{S G 3}$.
(c) Show that $V_{D S 1}=9.77 \mathrm{~V}$ and $V_{B S 1}=-0.23 \mathrm{~V}$. Note that the current through R_{S} is equal to $I_{D 2}$.
(d) Use the equation $\chi=0.5 \gamma / \sqrt{\varphi-V_{B S}}$ to show that $\chi_{1}=0.823$.
(e) Use the equation $K=K_{0}\left(1+\lambda V_{D S}\right)$ to show that $K_{1}=4.78 \times 10^{-3} \mathrm{~A} / \mathrm{V}^{2}$.
(f) Use the equations $g_{m}=2 \sqrt{K I_{D}}$ and $r_{0}=\left(V_{D S}+1 / \lambda\right) / I_{D}$ to show that $g_{m 1}=3.32 \times$ $10^{-3} \mathrm{~S}$ and $r_{01}=51.9 \mathrm{k} \Omega$.
(g) Use the equation $r_{0}=\left(V_{S D}+1 / \lambda\right) / I_{D}$ to show that $r_{02}=52.1 \mathrm{k} \Omega$.
(h) Show that the small-signal short-circuit output current is

$$
i_{o(s c)}=-\frac{v_{i}}{1+\chi_{1}} \frac{1}{r_{s 1}^{\prime}+R_{S}}=1.50 \times 10^{-3} v_{i}
$$

Assume $r_{01}=\infty$ and use the simplified T model.
(i) Show that the small-signal output resistance and open-circuit output voltage are $r_{\text {out }}=$ $r_{i d 1} \| r_{02}=35.8 \mathrm{k} \Omega$ and $v_{o(o c)}=i_{o(s c)} \times r_{\text {out }}=-53.8 v_{i}$.
(j) If a load resistor $R_{L}=10 \mathrm{k} \Omega$ is connected from output to ground, show that the output voltage changes by the factor $R_{L} /\left(r_{\text {out }}+R_{L}\right)=0.218$ (or by -13.2 dB) and the new voltage gain is $v_{o} / v_{i}=-11.7$.
(k) If $R_{S}=0$, show that $v_{o(o c)}$ increases to the value $v_{o(o c)}=-86.28 v_{i}$. Show that the gain increases by 4.10 dB .
3. The figure shows a CG amplifier with a current-mirror active load. The voltage V_{G} is a dc bias voltage. Each MOSFET has the parameters $g_{m}=2.5 \times 10^{-3} \mathrm{~S}, r_{0}=40 \mathrm{k} \Omega$, and $\chi=0.5$. It is given that $R_{S}=200 \Omega$. It can be assumed that the dc value of the output voltage is zero.

(a) Solve for the Norton short-circuit output current. Assume $r_{01}=\infty$ and use the simplified T model. Answer: $i_{o(s c)}=v_{i} /\left(r_{s 1}^{\prime}+R_{S}\right)=2.14 \times 10^{-3} v_{i}$.
(b) Solve for the Thévenin equivalent circuit seen looking into the v_{o} node, i.e. solve for $r_{o u t}$ and $v_{o(o c)}$. Answers: $r_{o u t}=r_{i d 1} \| r_{02}=25.5 \mathrm{k} \Omega$ and $v_{o(o c)}=i_{o(s c)} \times r_{o u t}=54.6 v_{i}$.
(c) By what factor does v_{o} change if a load resistor $R_{L}=10 \mathrm{k} \Omega$ is connected from output to ground? What is the new voltage gain? Answer: $R_{L} /\left(r_{\text {out }}+R_{L}\right)=0.282$ or by -11 dB and $v_{o} / v_{i}=15.4$.
(d) Show that the input resistance is $r_{i n}=r_{s 1}^{\prime}=267 \Omega$.
4. The figure shows a CD amplifier with a current-mirror active load. The voltage V_{G} is a dc bias voltage. Each MOSFET has the parameters $g_{m}=2.5 \times 10^{-3} \mathrm{~S}, r_{0}=40 \mathrm{k} \Omega$, and $\chi=0.5$.

(a) Solve for the Norton short-circuit output current. Use the simplified T model. Answer: $i_{o(s c)}=v_{i} / r_{s 1}=g_{m 1} v_{i}=2.5 \times 10^{-3} v_{i}$. Note that the body effect cancels when $v_{o}=0$.
(b) Solve for the Thévenin equivalent circuit seen looking into the v_{o} node, i.e. solve for $r_{\text {out }}$ and $v_{o(o c)}$. Answers: $r_{o u t}=r_{s 1}^{\prime}\left\|r_{01}\right\| r_{02}=263 \Omega$ and $v_{o(o c)}=i_{o(s c)} \times r_{o u t}=0.658 v_{i}$.
(c) By what factor does v_{o} change if a load resistor $R_{L}=10 \mathrm{k} \Omega$ is connected from output to ground? What is the new voltage gain? Answers: $R_{L} /\left(r_{\text {out }}+R_{L}\right)=0.974$ or by -0.226 dB and $v_{o} / v_{i}=0.641$.
5. The figure shows a cascode amplifier. M_{1} is operated as a CS amplifier with a small-signal voltage v_{s} and a dc bias voltage $V_{B 1}$ applied to its gate. M_{2} is operated as a CG amplifier with a dc bias voltage $V_{B 2}$ applied to its gate. M_{3} and M_{4} form a current mirror with an input dc current $I_{\text {REF }}$. For each MOSFET, it is given that $g_{m}=0.005 \mathrm{~S}, g_{m b}=0.0025 \mathrm{~S}$, and $r_{0}=50 \mathrm{k} \Omega$.

(a) To simplify the solution for $i_{o(s c)}$, assume $r_{01}=r_{02}=\infty$. Show that $i_{o(s c)} / v_{s}=i_{d 2}^{\prime}=$ $i_{d 1}^{\prime}=0.005 \mathrm{~S}$.
(b) With $r_{01}=r_{02}=50 \mathrm{k} \Omega$, show that the output resistance is

$$
r_{\text {out }}=r_{03} \|\left[r_{02}\left(1+r_{01} / r_{s 2}^{\prime}\right)+r_{02}\right]=49.87 \mathrm{k} \Omega
$$

(c) Show that $v_{o(o c)} / v_{s}=-\left[i_{o(s c)} / v_{s}\right] \times r_{o u t} \| r_{03}=-249.3$.

