

ECE3050 – Assignment 15

1. The figure shows a JFET current source used as the tail supply for a diff amp. It is given that $V^{-} = -15 \text{ V}, \ \beta = 0.004 \text{ A}/\text{ V}^{2}, \text{ and } V_{TO} = -3 \text{ V}.$ Use the equations $I_{D} = \beta (V_{GS} - V_{TO})^{2}$ and $V_{GS} = -I_{D}R_{S}$ to solve for the drain current I_{D} .

2. The figure shows a BJT current source. It is given that $V^+ = 24 \text{ V}, V^- = -24 \text{ V}, V_T = 25 \text{ mV}, I_S = 7.5 \times 10^{-15} \text{ A}$, and $\beta = 49$. (Note that $\beta = 49$ is a low current gain, but it forces you to consider the base current.)

- (a) Solve for V_{BE} for $I_C = 3 \text{ mA}$. Answer: $V_{BE} = 0.668 \text{ V}$.
- (b) Solve for R_E such that the voltage across R_E is V_{BE} . Answer: $R_E = 218 \Omega$.
- (c) If $I_2 = 10I_B$, solve for R_2 . Answer: $R_2 = 2.18 \text{ k}\Omega$.
- (d) Solve for R_1 . Answer: $R_1 = 69.3 \text{ k}\Omega$.
- (e) If $V_A = 70 \text{ V}$, $V_C = -1 \text{ V}$, and $r_x = 40 \Omega$, solve for r'_e , r_0 , and r_{ic} . Answers: $r'_e = 51.3 \Omega$, $r_0 = 30.8 \text{ k}\Omega$, $r_{ic} = 149 \text{ k}\Omega$.
- (f) If the Early effect is neglected, i.e. assume that $\lambda = 0$ so that $\beta = \beta_0$, solve for R_S for $I_D = 2 \text{ mA}$. Note that $I_Q = I_D$ for the diff amp tail supply. Answer: $R_S = 1.15 \text{ k}\Omega$.
- (g) If $\lambda = 0.02 \text{ V}^{-1}$ and the voltage at the JFET drain is $V_D = -1 \text{ V}$, solve for the value of β (it is greater than β_0), r_0 , and r_{id} . Note that $R_Q = r_{id}$ for the diff amp tail supply. Answers: $r_0 = 30.9 \text{ k}\Omega$, $r_{id} = 254 \text{ k}\Omega$.