ECE3050 – Assignment 16

1. The figure shows a V_{BE} multiplier.

(a) By writing a single node equation at the base node of Q_1 , show that

$$I_1 = I_B + \frac{V_{BE}}{R_2} \Longrightarrow V = V_{BE} \left(1 + \alpha \frac{R_1}{R_2}\right) + \frac{I}{1 + \beta} R_1$$

Hint: Consider the emitter node to be the datum or zero voltage reference node and use

$$I_B = \frac{I_C}{\beta} = \frac{1}{\beta} (I - I_1) = \frac{1}{\beta} \left(I - \frac{V - V_{BE}}{R_1} \right)$$

- (b) If $\beta \to \infty$, show that the answer for part (a) is the same as the one derived in class.
- (c) For a given I and I_1 , show that

$$R_1 = \frac{V - V_{BE}}{I_1}$$
 and $R_2 = \frac{V_{BE}}{I_1/\alpha - I/\beta}$

- (d) For $V_T = 25 \text{ mV}$, $I_S = 7.5 \times 10^{-15} \text{ A}$, $\beta = 99$, and I = 5 mA, solve for R_1 and R_2 if V = 2.4 V and $I_1 = 0.1I$. Answers: $R_1 = 3.44 \text{ k}\Omega$, $R_2 = 1.49 \text{ k}\Omega$.
- (e) Calculate the new values of R_1 and R_2 if the base current in the BJT is neglected. Answers: $R_1 = 3.44 \text{ k}\Omega$, $R_2 = 1.36 \text{ k}\Omega$.
- (f) Repeat part (d) for $I_1 = 0.9I$. Answers: $R_1 = 395 \Omega$, $R_2 = 137 \Omega$.
- (g) Calculate the new values of R_1 and R_2 if the base current in the BJT is neglected. Answers: $R_1 = 395 \Omega$, $R_2 = 138 \Omega$.
- 2. The figure shows a circuit for calculating the small-signal resistance of the V_{BE} multiplier. It is given by $r = v_t/i_t$.

(a) If r_0 is neglected in the small-signal model, use superposition of v_t , i'_c , and i_b to show that

$$i_t = \frac{v_t}{R_1 + R_2} + i'_c + i_b \frac{R_2}{R_1 + R_2}$$
$$= \frac{v_t}{R_1 + R_2} + \alpha i'_e + \frac{i'_e}{1 + \beta} \frac{R_2}{R_1 + R_2}$$

(b) With r_0 neglected, replace the BJT with its simplified T model and show that i'_e is given by

$$i'_e = \frac{v_{tb}}{r'_e} = \frac{v_t R_2}{R_1 + R_2} \frac{1}{r'_e}$$

where r'_e is calculated with $R_{tb} = R_1 || R_2$.

(c) Combine the above results to show that

$$i_{t} = \frac{v_{t}}{R_{1} + R_{2}} \left[1 + \frac{R_{2}}{r'_{e}} \left(\alpha + \frac{1}{1 + \beta} \frac{R_{2}}{R_{1} + R_{2}} \right) \right]$$
$$= \frac{v_{t}}{R_{1} + R_{2}} \left[1 + \frac{\alpha R_{2}}{r'_{e}} \left(1 + \frac{R_{2}}{\beta (R_{1} + R_{2})} \right) \right]$$

(d) Add r_0 to the circuit and show that the small-signal resistance reduces to

$$r = \frac{v_t}{i_t} = r_0 \| r_c \qquad \text{where} \qquad r_c = \frac{R_1 + R_2}{1 + \frac{\alpha R_2}{r'_e} \left(1 + \frac{R_2}{\beta \left(R_1 + R_2 \right)} \right)}$$

(e) If $\beta \to \infty$, show that the expression for r_c reduces to

$$r_c = \frac{R_1 + R_2}{1 + R_2/r_e} = \frac{R_1 + R_2}{1 + g_m R_2}$$

- (f) For the values in Problem 1 part (e) and $r_x = 40 \Omega$, calculate r_c . Answer: $r_c = 55.1 \Omega$.
- (g) For the values in Problem 1 part (f) and $r_x = 40 \Omega$, calculate r_c . Answer: $r_c = 144 \Omega$.
- (h) For the lowest small-signal resistance of the V_{BE} multiplier, would it be better to bias the BJT at a small fraction of the current I or at a large fraction? Answer: A large fraction. However, the larger the BJT current, the more sensitive the value of R_2 becomes to the β of the transistor.
- 3. The figure shows a V_{BE} multiplier used as a bias source for a complementary CC amplifier. The transistor parameters are the same as those specified in Problem ??.

- (a) For $v_O = 0$, solve for V_{BE1} and V_{EB2} for $I_{E1} = I_{E2} = 5$ mA. Answer: $V_{BE1} = V_{EB2} = 0.68$ V.
- (b) For $v_O = 0$, solve for R_{E1} and R_{E2} so the voltage across each is equal to 0.1 of the voltage calculated in part (a). Answer: $R_{E1} = R_{E2} = 13.6 \Omega$.
- (c) Calculate the required voltage V across the V_{BE} multiplier. Answer: V = 1.50 V.
- (d) If I = 3 mA and $I_1 = 0.1I$, calculate V_{BE3} , R_1 , and R_2 in the V_{BE} multiplier. Answers: $V_{BE3} = 0.665 \text{ V}, R_1 = 2.77 \text{ k}\Omega, R_2 = 2.72 \text{ k}\Omega.$
- (e) If $V_A = 70$ V for Q_3 , calculate r_0 , r_c , and the small-signal resistance r of the V_{BE} multiplier. Answer: $r_0 = 26.5 \text{ k}\Omega$, $r'_e = 37.3 \Omega$, $r_c = 75.1 \Omega$, $r = 74.9 \Omega$.
- (f) If $R_L = 100 \Omega$, the V_{BE} multiplier can be approximated by an ac short circuit, and Q_1 and Q_2 have the parameters $r_0 = 40 \,\mathrm{k}\Omega$ and $r_x = 10 \,\Omega$, solve for the voltage gain of the CC stage. Answer: $A_v = 0.914$.