ECE3050 - Assignment 16

1. The figure shows a $V_{B E}$ multiplier.

(a) By writing a single node equation at the base node of Q_{1}, show that

$$
I_{1}=I_{B}+\frac{V_{B E}}{R_{2}} \Longrightarrow V=V_{B E}\left(1+\alpha \frac{R_{1}}{R_{2}}\right)+\frac{I}{1+\beta} R_{1}
$$

Hint: Consider the emitter node to be the datum or zero voltage reference node and use

$$
I_{B}=\frac{I_{C}}{\beta}=\frac{1}{\beta}\left(I-I_{1}\right)=\frac{1}{\beta}\left(I-\frac{V-V_{B E}}{R_{1}}\right)
$$

(b) If $\beta \rightarrow \infty$, show that the answer for part (a) is the same as the one derived in class.
(c) For a given I and I_{1}, show that

$$
R_{1}=\frac{V-V_{B E}}{I_{1}} \quad \text { and } \quad R_{2}=\frac{V_{B E}}{I_{1} / \alpha-I / \beta}
$$

(d) For $V_{T}=25 \mathrm{mV}, I_{S}=7.5 \times 10^{-15} \mathrm{~A}, \beta=99$, and $I=5 \mathrm{~mA}$, solve for R_{1} and R_{2} if $V=2.4 \mathrm{~V}$ and $I_{1}=0.1 I$. Answers: $R_{1}=3.44 \mathrm{k} \Omega, R_{2}=1.49 \mathrm{k} \Omega$.
(e) Calculate the new values of R_{1} and R_{2} if the base current in the BJT is neglected. Answers: $R_{1}=3.44 \mathrm{k} \Omega, R_{2}=1.36 \mathrm{k} \Omega$.
(f) Repeat part (d) for $I_{1}=0.9 I$. Answers: $R_{1}=395 \Omega, R_{2}=137 \Omega$.
(g) Calculate the new values of R_{1} and R_{2} if the base current in the BJT is neglected. Answers: $R_{1}=395 \Omega, R_{2}=138 \Omega$.
2. The figure shows a circuit for calculating the small-signal resistance of the $V_{B E}$ multiplier. It is given by $r=v_{t} / i_{t}$.

(a) If r_{0} is neglected in the small-signal model, use superposition of v_{t}, i_{c}^{\prime}, and i_{b} to show that

$$
\begin{aligned}
i_{t} & =\frac{v_{t}}{R_{1}+R_{2}}+i_{c}^{\prime}+i_{b} \frac{R_{2}}{R_{1}+R_{2}} \\
& =\frac{v_{t}}{R_{1}+R_{2}}+\alpha i_{e}^{\prime}+\frac{i_{e}^{\prime}}{1+\beta} \frac{R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

(b) With r_{0} neglected, replace the BJT with its simplified T model and show that i_{e}^{\prime} is given by

$$
i_{e}^{\prime}=\frac{v_{t b}}{r_{e}^{\prime}}=\frac{v_{t} R_{2}}{R_{1}+R_{2}} \frac{1}{r_{e}^{\prime}}
$$

where r_{e}^{\prime} is calculated with $R_{t b}=R_{1} \| R_{2}$.
(c) Combine the above results to show that

$$
\begin{aligned}
i_{t} & =\frac{v_{t}}{R_{1}+R_{2}}\left[1+\frac{R_{2}}{r_{e}^{\prime}}\left(\alpha+\frac{1}{1+\beta} \frac{R_{2}}{R_{1}+R_{2}}\right)\right] \\
& =\frac{v_{t}}{R_{1}+R_{2}}\left[1+\frac{\alpha R_{2}}{r_{e}^{\prime}}\left(1+\frac{R_{2}}{\beta\left(R_{1}+R_{2}\right)}\right)\right]
\end{aligned}
$$

(d) Add r_{0} to the circuit and show that the small-signal resistance reduces to

$$
r=\frac{v_{t}}{i_{t}}=r_{0} \| r_{c} \quad \text { where } \quad r_{c}=\frac{R_{1}+R_{2}}{1+\frac{\alpha R_{2}}{r_{e}^{\prime}}\left(1+\frac{R_{2}}{\beta\left(R_{1}+R_{2}\right)}\right)}
$$

(e) If $\beta \rightarrow \infty$, show that the expression for r_{c} reduces to

$$
r_{c}=\frac{R_{1}+R_{2}}{1+R_{2} / r_{e}}=\frac{R_{1}+R_{2}}{1+g_{m} R_{2}}
$$

(f) For the values in Problem 1 part (e) and $r_{x}=40 \Omega$, calculate r_{c}. Answer: $r_{c}=55.1 \Omega$.
(g) For the values in Problem 1 part (f) and $r_{x}=40 \Omega$, calculate r_{c}. Answer: $r_{c}=144 \Omega$.
(h) For the lowest small-signal resistance of the $V_{B E}$ multiplier, would it be better to bias the BJT at a small fraction of the current I or at a large fraction? Answer: A large fraction. However, the larger the BJT current, the more sensitive the value of R_{2} becomes to the β of the transistor.
3. The figure shows a $V_{B E}$ multiplier used as a bias source for a complementary CC amplifier. The transistor parameters are the same as those specified in Problem ??.

(a) For $v_{O}=0$, solve for $V_{B E 1}$ and $V_{E B 2}$ for $I_{E 1}=I_{E 2}=5 \mathrm{~mA}$. Answer: $V_{B E 1}=V_{E B 2}=$ 0.68 V .
(b) For $v_{O}=0$, solve for $R_{E 1}$ and $R_{E 2}$ so the voltage across each is equal to 0.1 of the voltage calculated in part (a). Answer: $R_{E 1}=R_{E 2}=13.6 \Omega$.
(c) Calculate the required voltage V across the $V_{B E}$ multiplier. Answer: $V=1.50 \mathrm{~V}$.
(d) If $I=3 \mathrm{~mA}$ and $I_{1}=0.1 I$, calculate $V_{B E 3}, R_{1}$, and R_{2} in the $V_{B E}$ multiplier. Answers: $V_{B E 3}=0.665 \mathrm{~V}, R_{1}=2.77 \mathrm{k} \Omega, R_{2}=2.72 \mathrm{k} \Omega$.
(e) If $V_{A}=70 \mathrm{~V}$ for Q_{3}, calculate r_{0}, r_{c}, and the small-signal resistance r of the $V_{B E}$ multiplier. Answer: $r_{0}=26.5 \mathrm{k} \Omega, r_{e}^{\prime}=37.3 \Omega, r_{c}=75.1 \Omega, r=74.9 \Omega$.
(f) If $R_{L}=100 \Omega$, the $V_{B E}$ multiplier can be approximated by an ac short circuit, and Q_{1} and Q_{2} have the parameters $r_{0}=40 \mathrm{k} \Omega$ and $r_{x}=10 \Omega$, solve for the voltage gain of the CC stage. Answer: $A_{v}=0.914$.

