ECE3050 Assignment 19

1. The circuit shows a Wein bridge oscillator. If $R_{1}=R_{2}, C_{1}=0.1 \mu \mathrm{~F}, C_{2}=0.22 \mu \mathrm{~F}$, and $R_{4}=10 \mathrm{k} \Omega$, specify R_{1}, R_{2}, and R_{3} for the circuit to have stable oscillations at $f=1000 \mathrm{~Hz}$. Answers: $R_{1}=R_{2}=1073 \Omega$ and $R_{3}=6875 \Omega$.

2. The figure shows a phase-shift oscillator with the feedback loop broken.

By writing node equations, it can be shown that the loop-gain transfer function is given by

$$
\frac{V_{o}^{\prime}}{V_{o}}=-\frac{R_{F}}{R} \frac{(R C s)^{3}}{(R C s)^{3}+6(R C s)^{2}+5(R C s)+1}
$$

(a) To solve for the frequency of oscillation, what do you set V_{o}^{\prime} / V_{o} equal to? Answer: $1 \angle 0^{\circ}$. (b) Use the transfer function to solve for the frequency of oscillation. Answer: $f_{0}=$ $1 /(2 \pi \sqrt{6} R C)$. (c) Use the transfer function to solve for value of R_{F} / R in order for $\left|V_{o}^{\prime} / V_{o}\right|=$ $1 \angle 0^{\circ}$ at $f=f_{0}$. Answer: $R_{F} / R_{1}=29$.
3. The figure shows a phase shift oscillator. If $C=0.1 \mu \mathrm{~F}$, specify R and R_{F} for the circuit to have stable oscillations at $f=200 \mathrm{~Hz}$. Answers: $R=3249 \Omega$ and $R_{F}=94.21 \mathrm{k} \Omega$.

4. The loop-gain transfer function of a particular oscillator circuit is given by

$$
\frac{V_{o}}{V_{o}^{\prime}}=K \frac{s}{(s / 100)^{2}+0.5(s / 100)+1}
$$

At what frequency does the circuit oscillate and what must be the value of K for stable oscillations? Answers: $f=15.9 \mathrm{~Hz}$ and $K=0.005$.

