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Transfer Functions and Bode Plots
These notes are not compete.

Transfer Functions
For sinusoidal time variations, the input voltage to a filter can be written

vI (t) = Re
£
Vie

jωt
¤

where Vi is the phasor input voltage, i.e. it has an amplitude and a phase, and ejωt = cosωt + j sinωt. A
sinusoidal signal is the only signal in nature that is preserved by a linear system. Therefore, if the filter is
linear, its output voltage can be written

vO (t) = Re
£
Voe

jωt
¤

where Vo is the phasor output voltage. The ratio of Vo to Vi is called the voltage-gain transfer function. It
is a function of frequency. Let us denote

T (jω) =
Vo
Vi

We can write T (jω) as follows:
T (jω) = A (ω) ejϕ(ω)

where A (ω) and ϕ (ω) are real functions of ω. A (ω) is called the gain function and ϕ (ω) is called the phase
function.
As an example, consider the filter input voltage

vI (t) = V1 cos (ωt+ θ) = Re
£
V1e

jθejωt
¤

The corresponding phasor input and output voltages are

Vi = V1e
jθ

Vo = V1e
jθA (ω) ejϕ(ω)

It follows that the time domain output voltage is

vO (t) = Re
h
V1e

jθA (ω) ejϕ(ω)ejωt
i
= A (ω)V1 cos [ωt+ θ + ϕ (ω)]

This equation illustrates why A (ω) is called the gain function and ϕ (ω) is called the phase function.
The complex frequency s is usually used in place of jω in writing transfer functions. In general, most

transfer functions can be written in the form

T (s) = K
N (s)

D (s)

where K is a gain constant and N (s) and D (s) are polynomials in s containing no reciprocal powers of s.
The roots of D (s) are called the poles of the transfer function. The roots of N (s) are called the zeros.
As an example, consider the function

T (s) = 4
s/4 + 1

s2/6 + 5s/6 + 1
= 4

s/4 + 1

(s/2 + 1) (s/3 + 1)

The function has a zero at s = −4 and poles at s = −2 and s = −3. Note that T (∞) = 0. Because of this,
some texts would say that T (s) has a zero at s =∞. However, this is not correct because N (∞) 6= 0.
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Note that the constant terms in the numerator and denominator of T (s) are both unity. This is one
of two standard ways for writing transfer functions. Another way is to make the coefficient of the highest
powers of s unity. In this case, the above transfer function would be written

T (s) = 6
s+ 4

s2 + 5s+ 6
= 6

s+ 4

(s+ 2) (s+ 3)

Because it is usually easier to construct Bode plots with the first form, that form is used here.
Because the complex frequency s is the operator which represents d/dt in the differential equation for

a system, the transfer function contains the differential equation. Let the transfer function above represent
the voltage gain of a circuit, i.e. T (s) = Vo/Vi, where Vo and Vi, respectively, are the phasor output and
input voltages. It follows that µ

s2

6
+
5s

6
+ 1

¶
Vo = 4

³s
4
+ 1
´
Vi

When the operator s is replaced with d/dt, the following differential equation is obtained:

1

6

d2vO
dt2

+
5

6

dvO
dt

+ vO =
dvI
dt

+ 4vI

where vO and vI , respectively, are the time domain output and input voltages. Note that the poles are
related to the derivatives of the output and the zeros are related to the derivatives of the input.

How to Construct Bode Plots
A Bode plot is a plot of either the magnitude or the phase of a transfer function T (jω) as a function of ω.
The magnitude plot is the more common plot because it represents the gain of the system. Therefore, the
term “Bode plot” usually refers to the magnitude plot. The rules for making Bode plots can be derived from
the following transfer function:

T (s) = K

µ
s

ω0

¶±n
where n is a positive integer. For +n as the exponent, the function has n zeros at s = 0. For -n, it has
n poles at s = 0. With s = jω, it follows that T (jω) = Kj±n (ω/ω0)

±n, |T (jω)| = K (ω/ω0)
±n and

6 T (jω) = ±n× 90 ◦. If ω is increased by a factor of 10, |T (jω)| changes by a factor of 10±n. Thus a plot
of |T (jω)| versus ω on log—log scales has a slope of log (10±n) = ±n decades/decade. There are 20 dBs in a
decade, so the slope can also be expressed as ±20n dB/decade.
As a first example, consider the low-pass transfer function

T (s) =
K

1 + s/ω1

This function has a pole at s = −ω1 and no zeros. For s = jω and ω/ω1 ¿ 1,we have T (jω) ' K, |T (jω)| '
K, and 6 T (jω) ' 0 × 90 ◦ = 0 ◦. For ω/ω1 À 1, T (jω) ' K (jω/ω1)

−1, |T (jω)| ' K (ω/ω1)
−1, and

6 T (jω) ' −1×90 ◦ = −90 ◦. On log− log scales, the magnitude plot for the low-frequency approximation has
a slope of 0 while that for the high-frequency approximation has a slope of −1. The low and high-frequency
approximations intersect when K = K (ω1/ω), or when ω = ω1. For ω = ω1, |T (jω)| = K/ |1 + j| = K/

√
2

and 6 T (jω) = − arctan (1) = −45 ◦. Note that this is the average value of the phase on the two adjoining
asymptotes. The Bode magnitude and phase plots are shown in Fig. 1. Note that the slope of the asymptotic
magnitude plot rotates by −1 at ω = ω1. Because ω1 is the magnitude of the pole frequency, we say that
the slope rotates by −1 at a pole. A straight line segment that is tangent to the phase plot at ω = ω1 would
intersect the 0 ◦ level at ω1/4.81 and the −90 ◦ level at 4.81ω1.
As a second example, consider the transfer function

T (s) = K

µ
1 +

s

ω1

¶
This function has a zero at s = −ω1. For s = jω and ω/ω1 ¿ 1,we have T (jω) ' K, |T (jω)| ' K,

and 6 T (jω) ' 0 × 90 ◦ = 0 ◦. For ω/ω1 À 1, T (jω) ' K (jω/ω1)
1 |T (jω)| ' K (ω/ω1) and 6 T (jω) '
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Figure 1: Bode plots. (a) Magnitude. (b) Phase.

+1 × 90 ◦ = 90 ◦. On log− log scales, the magnitude plot for the low-frequency approximation has a
slope of 0 while that for the high-frequency approximation has a slope of +1. The low and high-frequency
approximations intersect when K = K (ω/ω1), or when ω = ω1. For ω = ω1, |T (jω)| = K

√
2 and

6 T (jω) = arctan (1) = 45 ◦. Note that this is the average of the phase on the two adjoining asymptotes.
The Bode magnitude and phase plots are shown in Fig. 2. Note that the slope of the asymptotic magnitude
plot rotates by +1 at ω = ω1. Because ω1 is the magnitude of the zero frequency, we say that the slope
rotates by +1 at a zero. A straight line segment that is tangent to the phase plot at ω = ω1 would intersect
the 0 ◦ level at ω1/4.81 and the 90 ◦ level at 4.81ω1.

Figure 2: Bode plots. (a) Magnitude. (b) Phase.

From the above examples, we can summarize the basic rules for making Bode plots as follows:

1. In any frequency band where a transfer function can be approximated by K (jω/ω0)
±n, the slope of

the Bode magnitude plot is ±n dec/dec. The phase is ±n× 90 ◦.
2. Poles cause the asymptotic slope of the magnitude plot to rotate clockwise by one unit at the pole
frequency.

3. Zeros cause the asymptotic slope of the magnitude plot to rotate counter-clockwise by one unit at the
zero frequency.

As a third example, consider the transfer function

T (s) = K
s/ω1

s/ω1 + 1

This function has a pole at s = −ω1 and a zero at s = 0. For s = jω and ω/ω1 ¿ 1,we have |T (jω)| '
K (ω/ω1) and 6 T (jω) ' 90 ◦. For ω/ω1 À 1, |T (jω)| ' K and 6 T (jω) ' 0 ◦. On log− log scales, the
magnitude plot for the low-frequency approximation has a slope of +1 while that for the high-frequency
approximation has a slope of 0. The low and high-frequency approximations intersect when K (ω/ω1) = K,
or when ω = ω1. For ω = ω1, |T (jω)| = K/

√
2 and 6 T (jω) = 90o − arctan (1) = 45 ◦. The Bode magnitude

and phase plots are shown in Fig. 3. Note that the slope of the asymptotic magnitude plot rotates by −1
at the pole. The transfer function is called a high-pass function because its gain approaches zero at low
frequencies.
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Figure 3: Bode plots. (a) Magnitude. (b) Phase.

A shelving transfer function has the form

T (s) = K
1 + s/ω2
1 + s/ω1

The function has a pole at s = −ω1 and a zero at s = −ω2. We will consider the low-pass shelving function
for which ω1 < ω2. For s = jω and ω/ω1 ¿ 1, we have |T (jω)| ' K and 6 T (jω) ' 0 ◦. As ω is increased,
the pole causes the asymptotic slope to rotate from 0 to −1 at ω1. The zero causes the asymptotic slope
to rotate from −1 back to 0 at ω2. For ω/ω2 À 1, |T (jω)| ' K (ω1/ω2). The Bode magnitude plot is
shown in Fig. 4(a). If the transfer function did not have the zero, the actual gain at ω1 would be K/

√
2.

The zero causes the gain to be between K/
√
2 and K. Similarly, the pole causes the actual gain at ω2 to

be between K (ω1/ω2) and
√
2K (ω1/ω2). The actual plot intersects the asymptotic plot at the geometric

mean frequency
√
ω1ω2.

The phase plot has a slope that approaches 0 ◦ at very low frequencies and at very high frequencies.
At the geometric mean frequency

√
ω1ω2, the phase is approaching −90 ◦. If the function only had a pole,

the phase at ω1 would be −45 ◦, approaching −90 ◦ at higher frequencies. However, the zero causes the
high-frequency phase to approach 0 ◦. Thus the phase at ω1 is more positive than −45 ◦. At the geometric
mean frequency

√
ω1ω2, the slope of the phase function is zero. The Bode phase plot is shown in Fig. 4(b).

Figure 4: Bode plots. (a) Magnitude. (b) Phase.

Impedance Transfer Functions

RC Network

The impedance transfer function for a two-terminal RC network which contains only one capacitor and is
not an open circuit at dc can be written

Z = Rdc
1 + τzs

1 + τps

where Rdc is the dc resistance of the network, τp is the pole time constant, and τz is the zero time constant.
The pole time constant is the time constant of the network with the terminals open circuited. The zero
time constant is the time constant of the network with the terminals short circuited. Figure 5(a) shows the
circuit diagram of an example two-terminal RC network. The impedance transfer function can be written
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by inspection to obtain

Z = R1
1 +R2Cs

1 + (R1 +R2)Cs

Figure 5: Example RC and RL impedance networks.

RL Network

The impedance transfer function for a two-terminal RL network which contains only one inductor and is not
a short circuit at dc can be written

Z = Rdc
1 + τzs

1 + τps

where Rdc is the dc resistance of the network, τp is the pole time constant, and τ z is the zero time constant.
The pole time constant is the time constant of the network with the terminals open circuited. The zero
time constant is the time constant of the network with the terminals short circuited. Figure 5(b) shows the
circuit diagram of an example two-terminal RL network. The impedance transfer function can be written
by inspection to obtain

Z = R1kR2 1 + (L/R2) s

1 + [L/ (R1 +R2)] s

Voltage Divider Transfer Functions

RC Network

The voltage-gain transfer function of a RC voltage-divider network containing only one capacitor and having
a non-zero gain at dc can be written

Vo
Vi
= Kdc

1 + τzs

1 + τps

where Kdc is the dc gain (C an open circuit), τp is the pole time constant, and τz is the zero time constant.
The pole time constant is the time constant of the network with Vi = 0 and Vo open circuited. The zero
time constant is the time constant of the network with Vo = 0 and Vi open circuited. Figure 6(a) shows the
circuit diagram of an example RC network. The voltage-gain transfer function can be written by inspection
to obtain

Vo
Vi
=

R2 +R3
R1 +R2 +R3

× 1 + (R2kR3)Cs
1 + [(R1 +R2) kR3]Cs

Figure 6(b) shows the circuit diagram of a second example RC network. The voltage-gain transfer function
can be written by inspection to obtain

Vo
Vi
=

R3
R1 +R3

× 1 + (R1 +R2)Cs

1 + [(R1kR3) +R2]Cs
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Figure 6: Example RC voltage divider networks.

High-Pass RC Network

The voltage-gain transfer function of a high-pass RC voltage-divider network containing only one capacitor
can be written

Vo
Vi
= K∞

τps

1 + τps

where K∞ is the infinite frequency gain (C a short circuit) and τp is the pole time constant. The pole time
constant is calculated with Vi = 0 and Vo open circuited. Figure 6(c) shows the circuit diagram of a third
example RC network. The voltage-gain transfer function can be written by inspection to obtain

Vo
Vi
=

R2
R1 +R2

× (R1 +R2)Cs

1 + (R1 +R2)Cs

RL Network

The voltage-gain transfer function of a RL voltage-divider network containing only one inductor and having
a non-zero gain at dc can be written

Vo
Vi
= Kdc

1 + τzs

1 + τps

where K∞ is the zero frequency gain (L a short circuit), τp is the pole time constant, and τz is the zero time
constant. The pole time constant is the time constant of the network with Vi = 0 and Vo open circuited.
The zero time constant is the time constant of the network with Vo = 0 and Vi open circuited. Figure 7(a)
shows the circuit diagram of an example RL network. The voltage-gain transfer function can be written by
inspection to obtain

Vo
Vi
=

R2
R1 +R2

× 1 + [L/ (R2kR3)] s
1 + (L/ [(R1 +R2) kR3]) s

Figure 7(b) shows the circuit diagram of a second example RL network. The voltage-gain transfer function
can be written by inspection to obtain

Vo
Vi
=

R3
R1 +R3

× 1 + (L/R1) s

1 + (L/ [R1k (R2 +R3)]) s

High-Pass RL Network

The voltage-gain transfer function of a high-pass RL voltage-divider network containing only one inductor
can be written

Vo
Vi
= K∞

τps

1 + τps

where K∞ is the infinite frequency gain (L an open circuit) and τp is the pole time constant. The pole time
constant is calculated with Vi = 0 and Vo open circuited. Figure 7(c) shows the circuit diagram of a third
example RL network. The voltage-gain transfer function can be written by inspection to obtain

Vo
Vi
=

R2
R1 +R2

× [L/ (R1kR2)] s
1 + [L/ (R1kR2)] s
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Figure 7: Example RL voltage divider circuits.
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