Superposition Examples

The following examples illustrate the proper use of superposition of dependent sources. All superposition equations are written by inspection using voltage division, current division, series-parallel combinations, and Ohm's law. In each case, it is simpler not to use superposition if the dependent sources remain active.

Example 1

The object is to solve for the current i in the circuit of Fig. 1. By superposition, one can write

$$
i=\frac{24}{3+2}-7 \frac{2}{3+2}-\frac{3 i}{3+2}=2-\frac{3}{5} i
$$

Solution for i yields

$$
i=\frac{2}{1+3 / 5}=\frac{5}{4} \mathrm{~A}
$$

Figure 1: Circuit for example 1.
If superposition of the controlled source is not used, two solutions must be found. Let $i=i_{a}+i_{b}$, where i_{a} is the current with the 7 A source zeroed and i_{b} is the current with the 24 V source zeroed. By superposition, we can write

$$
i_{a}=\frac{24}{3+2}-\frac{3 i_{a}}{3+2} \quad i_{b}=-7 \frac{2}{3+2}-\frac{3 i_{b}}{3+2}
$$

Solution for i_{a} and i_{b} yields

$$
i_{a}=\frac{\frac{24}{3+2}}{1+\frac{3}{3+2}}=3 \mathrm{~A} \quad i_{b}=\frac{-7 \frac{2}{3+2}}{1+\frac{3}{3+2}}=-\frac{7}{4} \mathrm{~A}
$$

The solution for i is thus

$$
i=i_{a}+i_{b}=\frac{5}{4} \mathrm{~A}
$$

This is the same answer obtained by using superposition of the controlled source.

Example 2

The object is to solve for the voltages v_{1} and v_{2} across the current sources in Fig. 2, where the datum node is the lower branch. By superposition, the current i is given by

$$
i=2 \frac{7}{7+15+5}+\frac{3}{7+15+5}+4 i \frac{7+15}{7+15+5}=\frac{17}{27}+\frac{88}{27} i
$$

Solution for i yields

$$
i=\frac{17 / 27}{1-88 / 27}=-\frac{17}{61} \mathrm{~A}
$$

Although superposition can be used to solve for v_{1} and v_{2}, it is simpler to write

$$
v_{2}=5 i=-1.393 \mathrm{~V} \quad v_{1}=v_{2}-(4 i-i) 15=11.148 \mathrm{~V}
$$

Figure 2: Circuit for example 2.

Example 3

The object is to solve for the current i_{1} in the circuit of Fig. 3. By superposition, one can write

$$
i_{1}=\frac{30}{6+4+2}+3 \frac{4}{6+4+2}-8 i_{1} \frac{6}{6+4+2}=\frac{42}{12}-4 i_{1}
$$

Solution for i_{1} yields

$$
i_{1}=\frac{42 / 12}{1+4}=0.7 \mathrm{~A}
$$

Figure 3: Circuit for example 3.

Example 4

The object is to solve for the Thévenin equivalent circuit seen looking into the terminals $A-A^{\prime}$ in the circuit of Fig. 4. By superposition, the voltage v_{x} is given by

$$
v_{x}=\left(3-i_{o}\right)(2 \| 40)+5 v_{x} \frac{2}{40+2}=\frac{80}{42}\left(3-i_{o}\right)+\frac{10}{42} v_{x}
$$

where i_{o} is the current drawn by any external load and the symbol "\|" denotes a parallel combination. Solution for v_{x} yields

$$
v_{x}=\frac{80 / 42}{1-10 / 42}\left(3-i_{o}\right)=2.5\left(3-i_{o}\right)
$$

Although superposition can be used to solve for v_{o}, it is simpler to write

$$
v_{o}=v_{x}-5 v_{x}=-30+10 i_{o}
$$

It follows that the Thévenin equivalent circuit consists of a -30 V source in series with a -10Ω resistor. The circuit is shown in Fig. 5.

Figure 4: Circuit for example 4.

Figure 5: Thévenin equivalent circuit.

Example 5

The object is to solve for the voltage v_{o} in the circuit of Fig. 6. By superposition, the current i_{b} is given by

$$
\begin{aligned}
i_{b}= & \frac{70}{4\|20+2\| 10} \frac{20}{4+20}+\frac{50}{10+4\|20\| 2} \frac{20 \| 2}{4+20 \| 2} \\
& -\frac{2 i_{b}}{20\|2+4\| 10} \frac{10}{4+10} \\
= & \frac{35}{3}+\frac{25}{18}-\frac{11}{36} i_{b}
\end{aligned}
$$

Solution for i_{b} yields

$$
i_{b}=\frac{35 / 3+25 / 18}{1+11 / 36}=10 \mathrm{~A}
$$

Although superposition can be used to solve for v_{o}, it is simpler to write

$$
v_{o}=70-4 i_{b}=30 \mathrm{~V}
$$

Figure 6: Circuit for example 5.

Example 6

The object is to solve for the voltage v_{o} in the circuit of Fig. 7. By superposition, the voltage v_{Δ} is given by

$$
v_{\Delta}=-0.4 v_{\Delta} \times 10+5 \times 10
$$

This can be solved for v_{Δ} to obtain

$$
v_{\Delta}=\frac{5 \times 10}{1+0.4 \times 10}=10 \mathrm{~V}
$$

By superposition, i_{Δ} is given by

$$
i_{\Delta}=\frac{10}{5+20}-0.4 v_{\Delta} \frac{20}{20+5}=\frac{10}{25}-0.4 v_{\Delta} \frac{20}{25}=-\frac{70}{25} \mathrm{~A}
$$

Thus v_{o} is given by

$$
v_{o}=10-5 i_{\Delta}=24 \mathrm{~V}
$$

Figure 7: Circuit for example 6.

Example 7

The object is to solve for the voltage v as a function of v_{s} and i_{s} in the circuit in Fig. 8. By superposition, the current i is given by

$$
i=\frac{v_{s}}{5}-\frac{2}{5} i_{s}-\frac{3}{5} \times 3 i
$$

This can be solved for i to obtain

$$
i=\frac{v_{s}}{14}-\frac{i_{s}}{7}
$$

By superposition, the voltage v is given by

$$
\begin{aligned}
v & =\frac{v_{s}}{5}-\frac{2}{5} i_{s}+\frac{2}{5} \times 3 i \\
& =\frac{v_{s}}{5}-\frac{2}{5} i_{s}+\frac{2}{5} \times 3\left(\frac{v_{s}}{14}-\frac{i_{s}}{7}\right) \\
& =\frac{2}{7} v_{s}-\frac{4}{7} i_{s}
\end{aligned}
$$

Example 8

This example illustrates the use of superposition in solving for the dc bias currents in a BJT. The object is to solve for the collector current I_{C} in the circuit of Fig. 9. Although no explicit dependent sources are shown, the three BJT currents are related by $I_{C}=\beta I_{B}=\alpha I_{E}$, where β is the current gain and $a=\beta /(1+\beta)$. If any one of the currents is zero, the other two must also be zero. However, the currents can be treated as independent variables in using superposition.

Figure 8: Circuit for Example 7.

Figure 9: Circuit for example 8.

By superposition of $V^{+}, I_{B}=I_{C} / \beta$, and I_{C}, the voltage V_{B} is given by

$$
\begin{aligned}
V_{B}= & V^{+} \frac{R_{2}}{R_{C}+R_{1}+R_{2}}-\frac{I_{C}}{\beta}\left[\left(R_{C}+R_{1}\right) \| R_{2}\right] \\
& -I_{C} \frac{R_{C} R_{2}}{R_{C}+R_{1}+R_{2}}
\end{aligned}
$$

A node-voltage solution for V_{B} requires the solution of two simultaneous equations to obtain the same answer which superposition yields by inspection. This equation and the equation

$$
V_{B}=V_{B E}+\frac{I_{C}}{\alpha} R_{E}
$$

can be solved for I_{C} to obtain

$$
I_{C}=\frac{V^{+} \frac{R_{2}}{R_{C}+R_{1}+R_{2}}-V_{B E}}{\frac{\left(R_{C}+R_{1}\right) \| R_{2}}{\beta}+\frac{R_{C} R_{2}}{R_{C}+R_{1}+R_{2}}+\frac{R_{E}}{\alpha}}
$$

In most contemporary electronics texts, the value $V_{B E}=0.7 \mathrm{~V}$ is assumed in BJT bias calculations.

Example 9

This example illustrates the use of superposition to solve for the small-signal base input resistance of a BJT. Fig. 10 shows the small-signal BJT hybrid-pi model with a resistor R_{E} from emitter to ground and a resistor R_{C} from collector to ground. In the model, $r_{\pi}=V_{T} / I_{B}$ and $r_{0}=\left(V_{A}+V_{C E}\right) / I_{C}$, where V_{T} is the thermal voltage, I_{B} is the dc base current, V_{A} is the Early voltage, $V_{C E}$ is the dc collector-emitter voltage, and I_{C} is the dc collector current.

Figure 10: Circuit for example 9.

By superposition of i_{b} and βi_{b}, the base voltage v_{b} is given by

$$
v_{b}=i_{b}\left[r_{\pi}+R_{E} \|\left(r_{0}+R_{C}\right)\right]+\beta i_{b} \frac{r_{0}}{R_{E}+r_{0}+R_{C}} R_{E}
$$

This can be solved for the base input resistance $r_{i b}=v_{b} / i_{b}$ to obtain

$$
r_{i b}=r_{\pi}+R_{E} \|\left(r_{0}+R_{C}\right)+\frac{\beta r_{0} R_{E}}{R_{E}+r_{0}+R_{C}}
$$

which simplifies to

$$
r_{i b}=r_{\pi}+R_{E} \frac{(1+\beta) r_{0}+R_{C}}{R_{E}+r_{0}+R_{C}}
$$

A node-voltage solution for $r_{i b}$ requires the solution of three simultaneous equations to obtain the same answer which follows almost trivially by superposition.

Example 10

This example illustrates the use of superposition with an op-amp circuit. The circuit is shown in Fig. 11. The object is to solve for v_{O}. With $v_{2}=0$, it follows that $v_{A}=v_{1}, v_{B}=0$, and $v_{C}=\left[1+R_{4} /\left(R_{3} \| R_{5}\right)\right] v_{1}$. By superposition of v_{A} and v_{C}, v_{O} can be written

$$
v_{O}=-\frac{R_{2}}{R_{5}} v_{A}-\frac{R_{2}}{R_{1}} v_{C}=-\left[\frac{R_{2}}{R_{5}}+\frac{R_{2}}{R_{1}}\left(1+\frac{R_{4}}{R_{3} \| R_{5}}\right)\right] v_{1}
$$

With $v_{1}=0$, it follows that $v_{A}=0, v_{B}=v_{2}$, and $v_{C}=-\left(R_{4} / R_{5}\right) v_{2}$. By superposition of v_{2} and v_{C}, v_{O} can be written

$$
\begin{aligned}
v_{O} & =\left(1+\frac{R_{2}}{R_{1} \| R_{5}}\right) v_{2}-\frac{R_{2}}{R_{1}} v_{C} \\
& =\left(1+\frac{R_{2}}{R_{1} \| R_{5}}+\frac{R_{2}}{R_{1}} \frac{R_{4}}{R_{5}}\right) v_{2}
\end{aligned}
$$

Thus the total expression for v_{O} is

$$
\begin{aligned}
v_{O}= & -\left[\frac{R_{2}}{R_{5}}+\frac{R_{2}}{R_{1}}\left(1+\frac{R_{4}}{R_{3} \| R_{5}}\right)\right] v_{1} \\
& +\left(1+\frac{R_{2}}{R_{1} \| R_{5}}+\frac{R_{2}}{R_{1}} \frac{R_{4}}{R_{5}}\right) v_{2}
\end{aligned}
$$

Figure 11: Circuit for Example 10.

Example 11

Figure 12 shows a circuit that might be encountered in the noise analysis of amplifiers. The amplifier is modeled by a z-parameter model. The square sources represent noise sources. $V_{t s}$ and $I_{t A}$, respectively, model the thermal noise generated by Z_{x} and $Z_{A} . V_{n}$ and I_{n} model the noise generated by the amplifier. The amplifier load is an open circuit so that $I_{2}=0$. The open-circuit output voltage is given by

$$
V_{o(o c)}=z_{12} I_{1}+I_{A} Z_{A}
$$

By superposition, the currents I_{1} and I_{A} are given by

$$
\begin{aligned}
I_{1}= & \frac{V_{s}+V_{t s}+V_{n}}{Z_{S}+Z_{A}+z_{11}}+I_{n} \frac{Z_{S}+Z_{A}}{Z_{S}+Z_{A}+z_{11}} \\
& -I_{t A} \frac{Z_{A}}{Z_{S}+Z_{A}+z_{11}} \\
I_{A}= & \frac{V_{s}+V_{t s}+V_{n}}{Z_{S}+Z_{A}+z_{11}}-I_{n} \frac{z_{11}}{Z_{S}+Z_{A}+z_{11}} \\
& +I_{t A} \frac{Z_{S}+z_{11}}{Z_{S}+Z_{A}+z_{11}}
\end{aligned}
$$

Note that when $I_{n}=0$, the sources $V_{s}, V_{t s}$, and V_{n} are in series and can be considered to be one source equal to the sum of the three. When these are substituted into the equation for $V_{o(o c)}$ and the equation is simplified, we obtain

$$
\begin{aligned}
V_{o(o c)}= & \frac{z_{21}+Z_{A}}{Z_{S}+Z_{A}+z_{11}}\left[V_{s}+V_{t s}+V_{n}\right. \\
& +I_{n} \frac{\left(Z_{S}+Z_{A}\right) z_{21}-Z_{A} z_{11}}{z_{21}+Z_{A}} \\
& \left.-I_{t A} \frac{Z_{A} z_{21}-\left(Z_{S}+z_{11}\right) Z_{A}}{z_{21}+Z_{A}}\right]
\end{aligned}
$$

Figure 12: Circuit for Example 11.

Example 12

It is commonly believed that superposition can only be used with circuits that have more than one source. This example illustrates how it can be use with a circuit having one. Consider the first-order all-pass filter shown in Fig. 13(a). An equivalent circuit is shown in Fig. 13(b) in which superposition can be used to write by inspection

$$
V_{o}=\left(1+\frac{R_{1}}{R_{1}}\right) \frac{R C s}{1+R C s} V_{i}-\frac{R_{1}}{R_{1}} V_{i}=\frac{R C s-1}{R C s+1} V_{i}
$$

Figure 13: Circuit for Example 12.

