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The BJT

Notation

The notations used here for voltages and currents correspond to the following conventions: Dc bias
values are indicated by an upper case letter with upper case subscripts, e.g. VDS , IC . Instantaneous
values of small-signal variables are indicated by a lower-case letter with lower-case subscripts, e.g.
vs, ic. Total values are indicated by a lower-case letter with upper-case subscripts, e.g. vBE , iD.
Circuit symbols for independent sources are circular and symbols for controlled sources have a
diamond shape. Voltage sources have a ± sign within the symbol and current sources have an
arrow.

Device Equations

Figure 1 shows the circuit symbols for the npn and pnp BJTs. In the active mode, the collector-base
junction is reverse biased and the base-emitter junction is forward biased. For the npn device, the
active-mode collector and base currents are given by

iC = IS exp

(
vBE
VT

)
iB =

iC
β

(1)

where VT is the thermal voltage, IS is the saturation current, and β is the base-to-collector current
gain. These are given by

VT =
kT

q
= 0.025V for T = 290K = 25.86mV for T = 300K (2)

IS = IS0

(
1 +

vCE
VA

)
(3)

β = β0

(
1 +

vCE
VA

)
(4)

where VA is the Early voltage and IS0 and β0, respectively, are the zero bias values of IS and β.
Because IS/β = IS0/β0, it follows that iB is not a function of vCE. The equations apply to the
pnp device if the subscripts BE and CE are reversed.

The emitter-to-collector current gain α is defined as the ratio iC/iE. To solve for this, we can
write

iE = iB + iC =

(
1

β
+ 1

)
iC =

1+ β

β
iC (5)

It follows that

α =
iC
iE
=

β

1 + β
β =

iC
iB
=

α

1− α
(6)

Thus the currents are related by the equations

iC = βiB = αiE (7)
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Figure 1: BJT circuit symbols.

Transfer Characteristics

The transfer characteristics are a plot of the collector current iC as a function of the base-to-emitter
voltage vBE with the collector-to-emitter voltage vCE held constant. From Eqs. 1 and 3, we can
write

iC = IS0

(
1 +

vCE
VA

)
exp

(
vBE
VT

)
(8)

It follows that iC varies exponentially with vBE. A plot of this variation is given in Fig. 2. It
can be seen from the plot that the collector current is essentially zero until the base-to-emitter
voltage reaches a threshold value. Above this value, the collector current increases rapidly. The
threshold value is typically in the range of 0.5 to 0.6 V. For high current transistors, it is usually
smaller. The plot shows a single curve. If vCE is increased, the current for a given vBE is larger.
However, the displacement between the curves is so small that it can be difficult to distinguish
between them. The small-signal transconductance gm defined below is the slope of the transfer
characteristics curve evaluated at the quiescent or dc operating point.

Figure 2: BJT transfer characteristics.
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Output Characteristics

The output characteristics are a plot of the collector current iC as a function of the collector-to-
emitter voltage vCE with the base current iB held constant. From Eqs. 1 and 4, we can write

iC = β0

(
1 +

vCE
VA

)
iB (9)

It follows that iC varies linearly with vCE. A plot of this variation is given in Fig. 3. For small
vCE such that 0 ≤ vCE < vBE, Eq. (9) does not hold. This is the region on the left in Fig. 3. In
this region, the BJT is saturated. The small-signal collector-to-emitter resistance r0 defined below
is the reciprocal of the slope of the transfer characteristics curve evaluated at the quiescent or dc
operating point to the right of the saturation region in Fig. 3.

Figure 3: BJT output characteristics.

Hybrid-π Model

Let each current and voltage be written as the sum of a dc component and a small-signal ac
component as follows:

iC = IC + ic iB = IB + ib (10)

vBE = VBE + vbe vCE = VCE + vce (11)

If the ac components are sufficiently small, we can write

ic =
∂IC
∂VBE

vbe +
∂IC
∂VCE

vce ib =
∂IB
∂VBE

vbe (12)

where the derivatives are evaluated at the dc bias values. The transconductance gm, the collector-
to-emitter resistance r0, and the base-to-emitter resistance rπ are defined as follows:

gm =
∂IC
∂VBE

=
IS
VT
exp

(
VBE
VT

)
=
IC
VT

(13)
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r0 =

(
∂IC
∂VCE

)
−1

=

[
IS0
VA

exp

(
VBE
VT

)]
−1

=
VA + VCE

IC
(14)

rπ =

(
∂IB
∂VBE

)
−1

=

[
IS0
β0VT

exp

(
VBE
VT

)]
−1

=
VT
IB

(15)

It is convenient to define the current i′c as follows:

i′c = gmvπ where vπ = vbe (16)

It follows that the collector and base currents can thus be written

ic = i
′

c +
vce
r0

ib =
vπ
rπ

(17)

The small-signal circuit which models these equations is given in Fig. 4(a). This is called the
hybrid-π model. The resistor rx in series with the base is called the base spreading resistance. This
resistor arises from the resistance of the base connection. There is no equation for it for it must be
measured. It is often neglected in small-signal analyses.

Figure 4: Rev(a) Hybrid-π model. (b) T model.

The small-signal base-to-collector ac current gain β is defined as the ratio i′c/ib. It is given by

β =
i′c
ib
=
gmvπ
ib

= gmrπ =
IC
VT

×
VT
IB

=
IC
IB

(18)

Note that ic differs from i′c by the current through r0. Therefore, ic/ib �= β unless r0 =∞.

T Model

The T model replaces the resistor rπ in series with the base with a resistor re in series with the
emitter. This resistor is called the emitter intrinsic resistance. The current i′e can be written

i′e = ib + i
′

c =

(
1

β
+ 1

)
i′c =

1 + β

β
i′c =

i′c
α

(19)

where α is the small-signal emitter-to-collector ac current gain given by

α =
β

1 + β
(20)
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Thus the current i′c can be written
i′c = αi

′

e (21)

The voltage vπ can be related to i
′

e as follows:

vπ = ibrπ =
i′c
β
rπ =

αi′e
β
rπ = i

′

e

αrπ
β
= i′e

rπ
1 + β

= i′ere (22)

The above equation defines the intrinsic emitter resistance re given by

re =
vπ
i′e
=

rπ
1 + β

=
VT

(1 + β) IB
=
VT
IE

(23)

The T model of the BJT is shown in Fig. 4(b). The currents in both models are related by the
equations

i′c = gmvπ = βib = αi
′

e (24)

The Collector Equivalent Circuit

If the BJT output is taken from the collector, the input can be either applied to the base or to the
emitter. If it is applied to the base, the circuit is called a common-emitter amplifier. If it is applied
to the emitter, the circuit is called a common-base amplifier. In some cases, separate inputs can
be applied to both the base and the emitter. In any of these cases, the collector output can be
solved for by first making a small-signal Thévenin or Norton equivalent circuit seen looking into
the collector. We solve for the Norton equivalent circuit here. We assume that the circuits external
to the base and the emitter can be represented by Thévenin equivalents.

Figure 5(a) shows the BJT symbol with separate Thévenin sources connected to the base and
the emitter. The bias circuits are not shown, but we assume that the bias solutions are known.
Figure 5(b) shows the circuit with the BJT replaced with the hybrid-π model.

Figure 5: (a) BJT symbol with Thévenin sources connected to the base and the emitter. (b) Circuit
with the BJT replaced with the hybrid-π model. (c) Norton equivalent collector circuit.

The Norton equivalent circuit seen looking into the collector consists of a parallel current source
ic(sc) and resistor ric connecting between the collector and ground. This is shown in Figure 5(c).
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The value of ic(sc) is the collector current with vc = 0, i.e. with the collector node grounded. From
Figure 5(b), this current is given by

ic(sc) = i
′

c + i0 � i
′

c (25)

where the approximation assumes that the current i0 through r0 is small compared to i
′

c. This
is usually a very good approximation because r0 is a large value resistor. We call it the “r0
approximation” when the current i0 is neglected. In many cases, r0 is taken to be an infinite
resistor, in which case the approximation is exact.

To solve for i′c, we can write the loop equation

vtb − vte = ib (Rtb + rx + rπ) +
(
i′e + i0

)
Rte

=
i′c
β
(Rtb + rx + rπ) +

(
i′c
α
+ i0

)
Rte

� i′c

(
Rtb + rx + rπ

β
+
Rte
α

)
(26)

where the relations ib = i′c/β and i′e = i′c/α have been used. An alternate way of writing this
equation is to use the relation vπ = i′c/gm for vπ as follows:

vtb − vte = ib (Rtb + rx) + vπ +
(
i′e + i0

)
Rte

=
i′c
β
(Rtb + rx) +

i′c
gm

+

(
i′c
α
+ i0

)
Rte

� i′c

(
Rtb + rx
β

+
1

gm
+
Rte
α

)
(27)

It follows from both equations that we can write

ic(sc) = i
′

c = Gm (vtb − vte) (28)

where Gm is an equivalent transconductance given by either of the equations

Gm =
1

Rtb + rx + rπ
β

+
Rte
α

or
=

1
Rtb + rx
β

+
1

gm
+
Rte
α

or
=

1
Rtb + rx
β

+
re +Rte
α

(29)

The third equation follows from the relation re/α = 1/gm = rπ/β. It would be obtained directly if
the T model is used.

We next solve for the resistance ric seen looking into the collector node. Consider the collector
current ic to be an independent current source and set vtb = vte = 0. Using superposition, we can
write

vc = ic [r0 + (Rtb + rx + rπ) ‖Rte]− βibr0 (30)

where i′c = βib has been used. Current division can be used to express ib in this equation in terms
of ic as follows:

ib = −ic
Rte

Rtb + rx + rπ +Rte
(31)

Substitution of this equation for ib into the the equation for vc yields

vc = ic

[
r0 + (Rtb + rx + rπ) ‖Rte +

βRte
Rtb + rx + rπ +Rte

r0

]
(32)
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It follows that the collector resistance is given by

ric =
vc
ic
= r0

(
1 +

βRte
Rtb + rx + rπ +Rte

)
+ (Rtb + rx + rπ) ‖Rte (33)

Note that no approximations have been made in solving for ric.
In summary, the small-signal Norton equivalent circuit seen looking into the collector of a BJT

is a current source ic(sc) in parallel with a resistor ric given by

ic(sc) = i
′

c = Gm (vtb − vte) (34)

Gm =
1

Rtb + rx + rπ
β

+
Rte
α

or
=

1
Rtb + rx
β

+
1

gm
+
Rte
α

or
=

1
Rtb + rx
β

+
re +Rte
α

(35)

ric = r0

(
1 +

βRte
Rtb + rx + rπ +Rte

)
+ (Rtb + rx + rπ) ‖Rte (36)

where vtb and vte, respectively, are the Thévenin voltages seen looking out of the base and emitter
and Rtb and Rte are the corresponding Thévenin resistances.

Example 1 Figure 6(a) shows the signal equivalent circuit of a common-emitter amplifier. It is
given that Rtb = 1kΩ, Rte = 50Ω, RC = 10kΩ, IC = 1mA, β = 100, rx = 0, r0 = 50kΩ, and
VT = 25mV. Solve for the voltage gain and output resistance of the circuit.

Figure 6: (a) Common-emitter amplifier. (b) Common-base amplifier. (c) Common-collector am-
plifier.

Solution: IB = IC/β = 0.01mA, α = β/ (1 + β) = 0.990, IE = IC/α = 1.01mA, rπ = VT/IB =
2.5kΩ, gm = IC/VT = 0.04S, re = VT/IE = 25/1.01 = 24.8Ω.

A flow graph for the voltage gain is shown in Figure 7(a). From the flow graph, we can write

vo
vtb

=
i′c
vtb
×
vo
i′c
= Gm ×− (ric‖RC)
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The numerical values are

Gm =
1

Rtb + rx + rπ
β

+
Rte
α

=
1

1k+ 2.5k

100
+

50

0.990

=
1

85.5

ric = r0

(
1 +

βRte
Rtb + rx + rπ +Rte

)
+ (Rtb + rx + rπ) ‖Rte

= 50k

(
1 +

100× 50

1k+ 2.5k+ 50

)
+
(1k+ 2.5k)× 50

1k+ 2.5k+ 50
= 120 kΩ

vo
vtb

= Gm ×− (ric‖RC) =
1

85.5
×−

120k× 10k

120k+ 10k
= −108

rout = ric‖RC =
120k× 10k

120k+ 10k
= 9.23 kΩ

Because the gain is negative, the amplifier is said to be an inverting amplifier.

Figure 7: (a) Flow graph for the CE amplifier. (b) Flow graph for the CB amplifier.

Example 2 Figure 6(b) shows the signal equivalent circuit of a common-base amplifier. It is given
that Rte = 100Ω, RC = 10kΩ, IC = 1mA, β = 100, r0 = 50kΩ, rx = 0, and VT = 25mV. Solve
for the voltage gain and output resistance of the circuit.

Solution: IB = IC/β = 0.01mA, α = β/ (1 + β) = 0.990, IE = IC/α = 1.01mA, rπ = VT/IB =
2.5kΩ, gm = IC/VT = 0.04S, re = VT/IE = 24.8Ω.

A flow graph for the voltage gain is shown in Figure 7(b). From the flow graph, we can write

vo
vte

=
i′c
vte
×
vo
i′c
= −Gm ×− (ric‖RC)

The numerical values are

Gm =
1

rx + rπ
β

+
Rte
α

=
1

2.5k

100
+
100

0.99

=
1

126

ric = r0

(
1 +

βRte
rx + rπ +Rte

)
+ (rx + rπ) ‖Rte

= 50k

(
1 +

100× 100

2.5k+ 100

)
+
2.5k× 100

2.5k+ 100
= 242 kΩ

vo
vte

= −Gm ×− (ric‖RC) = −
1

126
×−

242k× 10k

242k+ 10k
= 79.0

rout = ric‖RC =
242k× 10k

242k+ 10k
= 9.6kΩ

Because the gain is positive, the amplifier is said to be a non-inverting amplifier.
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The Base Equivalent Circuit

Figure 8(a) shows the BJT symbol with a Thévenin source connected to the emitter. The bias
circuits are not shown, but we assume that the bias solutions are known. We wish to solve for the
small-signal Thévenin equivalent circuit seen looking into the base. Figure 8(b) shows the circuit
with the BJT replaced with the hybrid-π model. The base spreading resistance rx is omitted
because it can be assumed to be part of the external base circuit. We wish to solve for the
Thévenin equivalent circuit seen looking into the base.

Figure 8: (a) BJT symbol with Thévenin source connected to the emitter. (b) Circuit with the
BJT replaced with the hybrid-π model. (c) Thévenin equivalent base circuit.

From the circuit in figure 8(b), we can write

vb = ib (rx + rπ) +
(
i′e + i0

)
Rte + vte � ib (rx + rπ) + i

′

eRte + vte

= ib [rx + rπ + (1 + β)Rte] + vte (37)

where we assume that i0 is small compared to i′e and the relation i
′

e = (1 + β) ib has been used. It
follows that the Thévenin equivalent circuit seen looking into the base is a source vte in series with
a resistance rib given by

rib = rx + rπ + (1 + β)Rte = rx + (1 + β) (re +Rte) (38)

where the relation rπ = (1 + β) re has been used in the second form. The equivalent circuit is
shown in Figure 8(c). The resistor Rte does not appear in this circuit because it is absorbed into
rib.

With the definition of rib, we can define another way of calculating ic(sc) in the Norton collector
circuit. The current ib in Figure 5(a) is given by

ib =
vtb − vte
Rtb + rib

(39)

Because i′c = βib and ic(sc) = i
′

c = Gm (vtb − vte), we have a fourth equation for Gm given by

Gm =
β

Rtb + rib
(40)
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Example 3 Solve for the input resistance rin of the common-emitter amplifier of Example 1.

Solution:

rin = Rtb + rx + rib = Rtb + rx + rπ + (1 + β)Rte = 1k+ 2.5k+ 101× 50 = 8.55kΩ

The Emitter Equivalent Circuit

Figure 9(a) shows the BJT symbol with a Thévenin source connected to the base. The bias circuits
are not shown, but we assume that the bias solutions are known. We wish to solve for the small-
signal Thévenin equivalent circuit seen looking into the emitter. Figure 9(b) shows the circuit with
the BJT replaced with the hybrid-π model. The base spreading resistance rx is omitted because it
can be assumed to be part of Rtb.

Figure 9: (a) BJT symbol with a Thévenin source connected to the base. (b) Circuit with the BJT
replaced with its hybrid-π model. (c) Thévenin emitter equivalent circuit.

From the circuit in 9(b), we can write

ve = vtb − ib (Rtb + rx + rπ)

= vtb −
i′e

1 + β
(Rtb + rx + rπ)

= vtb −
ie − i0
1 + β

(Rtb + rx + rπ)

� vtb −
ie

1 + β
(Rtb + rx + rπ) (41)

where the approximation assumes i0 is small compared to ie and the relation ib = i
′

e/ (1 + β) has
been used. It follows that the Thévenin equivalent circuit seen looking into the emitter is a source
vtb in series with a resistance rie given by

rie =
Rtb + rx + rπ

1 + β
or
=
Rtb + rx
1 + β

+ re (42)

where the relation re = rπ/ (1 + β) has been used in the second expression. The equivalent circuit
is shown in Figure 9(c). There is no Rtb in this circuit because it has been absorbed into rie.
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With the definition of rie, we can define another way of calculating ic(sc) in the Norton collector
circuit. The current ie in Figure 5(a) is given by

ie =
vtb − vte
rie +Rte

(43)

Because i′c = αi
′

e � αie and ic(sc) = i
′

c = Gm (vtb − vte), we have a fifth equation for Gm given by

Gm =
α

rie +Rte
(44)

Example 4 Solve for the input resistance of the common-base amplifier of Example 2.

Solution:

rin = rie +Rte =
rx + rπ
1 + β

+Rte =
2.5k

101
+ 100 = 125Ω

Example 5 Figure 6(c) shows the signal equivalent circuit of a common-collector amplifier. It is
given that Rtb = 10kΩ, Rte = 1kΩ, IC = 1mA, β = 100, rx = 0, r0 = 50kΩ, and VT = 25mV.
Solve for the voltage gain, the input resistance, and the output resistance of the circuit.

Solution: IB = IC/β = 0.01mA, α = β/ (1 + β) = 100/101, IE = IC/α = 1.01mA, rπ = VT/IB =
2.5kΩ, gm = IC/VT = 0.04S, re = VT/IE = 25/1.01 = 24.8Ω.

rie =
Rtb + rx + rπ

1 + β
=
10k+ 2.5k

101
= 124Ω

Gm =
1

rie +Rte
=

1

124 + 1k
=

1

1124
S

The input and output resistances are given by

rin = Rtb + rib = Rtb + rx + rπ + (1 + β)Rte = 10k+ 2.5k+ 101k× 1k = 114 kΩ

rout = rie‖Rte =
124× 1k

124 + 1k
= 122Ω

Two possible flow graphs for the solution are shown in Figure 10.

Figure 10: Flow graphs for the common-collector amplifier.

The first solution is illustrated in Figure 10(a), where voltage division is used to solve for the
gain.

vo
vtb

=
Rte

rie +Rte
=

1k

124 + 1k
= 0.890

The second solution is illustrated in Figure 10(b). The voltage gain is

vo
vtb

=
i′c
vtb
×
ie
i′c
×
vo
ie
= Gm ×

1

α
×Rte =

1

1124
×
101

100
× 1k = 0.890
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Figure 11: Summary of the collector, base, and emitter models.

Summary of Models

rib = rx + rπ + (1 + β)Rte
or
= rx + (1 + β) (re +Rte) (45)

rie =
Rtb + rx + rπ

1 + β
or
=
Rtb + rx
1 + β

+ re (46)

ic(sc) = i
′

c = Gm (vtb − vte) (47)

Gm =
1

Rtb + rx + rπ
β

+
Rte
α

or
=

1
Rtb + rx
β

+
1

gm
+
Rte
α

or
=

1
Rtb + rx
β

+
re +Rte
α

or
=

β

Rtb + rib

or
=

α

rie +Rtb
(48)

ric = r0

(
1 +

βRte
Rtb + rx + rπ +Rte

)
+ (Rtb + rx + rπ) ‖Rte

=
r0 + rie‖Rte

1− αRte/ (rie +Rte)
(49)

The second equation for ric is more compact and can be derived from the T model.

A CE/CC Amplifier

Figure 12(a) shows the ac signal circuit of a two-stage amplifier consisting of a CE stage followed
by a CC stage. Such a circuit is used to obtain a high voltage gain and a low output resistance.

To write the gain expression, we use the Norton collector circuit for Q1 and the Thévenin emitter
circuit for Q2. A flow graph for the voltage gain is shown in Figure 13.
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Figure 12: (a) A CE/CC amplifier. (b) A CE/CB amplifier.

Figure 13: Flow graph for the voltage gain of the CE/CC amplifier.
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From the flow graph, the voltage gain can be written

vo
vtb1

=
i′c1
vtb1

×
vtb2
i′c1

×
vo
vtb2

= Gm1 ×− (ric1‖RC1)×
Rte2

rie2 +Rte2
(50)

where rie2 is calculated with Rtb2 = ric1‖RC1 and

ric1 = r01‖

(
1 +

βRte1
Rtb1 + rx1 + rπ1 +Rte1

)
+Rte1‖ (Rtb1 + rx1 + rπ1)

The input and output resistances are given by

rin = Rtb1 + rib1 = Rtb1 + rx1 + rπ1 + (1 + β)Rte1 (51)

rout = rie2‖Rte2 =
Rtb1 + rx1 + rπ1

1 + β
‖Rte2 (52)

The circuit is an inverting amplifier consisting of an inverting stage followed by a non-inverting
stage.

Example 6 For the CE/CC amplifier in Figure 12(a) it is given that Rtb1 = 1kΩ, Rte1 = 50Ω,
RC1 = 20kΩ, and Rte2 = 200Ω. For both transistors, IC = 1mA, β = 100, rx = 0, r0 = 50kΩ,
and VT = 25mV. Solve for the voltage gain, input resistance, and output resistance of the circuit.

Solution: IB = IC/β = 0.01mA, α = β/ (1 + β) = 100/101, IE = IC/α = 1.01mA, rπ = VT/IB =
2.5kΩ, gm = IC/VT = 0.04S, re = VT/IE = 25/1.01 = 24.8Ω.

Gm1 =
1

Rtb1 + rx + rπ
β

+
Rte1
α

=
1

1k+ 2.5k

100
+

50

0.990

=
1

85.5

ric1 = r0

(
1 +

βRte
Rtb + rx + rπ +Rte

)
+ (Rtb + rx + rπ) ‖Rte

= 50k

(
1 +

100× 50

1k+ 2.5k+ 50

)
+ (1k+ 2.5k) ‖50 = 120 kΩ

rie2 =
Rtb2 + rx + rπ

1 + β
=
RC1‖ric1 + rx + rπ

1 + β
=
10k‖120k+ 2.5k

101
= 116Ω

vo
vtb1

= Gm1 × [− (ric1‖RC1)]×
Rte2

rie2 +Rte2
= −

1

85.5
× 120k‖20k×

200

116 + 200
= −127

rin = Rtb1 + rib1 = 1k+ 2.5k+ 101× 50 = 8.55kΩ

rout = rie2‖Rte2 =
116× 200

116 + 200
= 73.4Ω
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Figure 14: Flow graph for the voltage gain.

A Cascode Amplifier

Figure 12(b) shows the ac signal circuit of a cascode amplifier. A flow graph for the voltage gain is
shown in Figure 14. To write the gain expression, we use the Norton collector circuits for both Q1
and Q2.

From the flow graph, we can write

vo
vtb1

=
i′c1
vtb1

×
i′c2
i′c1
×
vo
i′c2
= Gm1 × α2 ×−ric2‖Rtc2

Note that setting ic2(sc)/ic1(sc) = α2 is an approximation that neglects the current through r01. The
input and output resistances are given by

rin = Rtb1 + rib1

rout = Rtc2

The resistance seen looking out of the collector of Q1 is rie2. The circuit is a non-inverting amplifier
consisting of two inverting stages in cascade.

A second cascode amplifier is shown in Fig. 16(a) where a pnp transistor is used for the second
stage. In this circuit, we consider ie2 to be positive into the emitter and ic2 to be positive out of
the collector. A flow graph for the voltage gain is shown in Figure 15. To write the gain expression,
we use the Norton collector circuits for both Q1 and Q2.

Figure 15: Flow graph for the voltage gain of the CE/CB amplifier.

From the flow graph, we can write

vo
vtb1

=
i′c1
vtb1

×
ie2
i′c1
×
i′c2
ie2
×
vo
i′c2
= Gm1 ×

−RC1
ric1 +RC1

× α2 × ric2‖Rtc2

The expressions for rin and rout are the same as for the cascode amplifier in Fig. 12(b). If RC1 →∞,
the gain expressions for the two cascode amplifiers are the same.

A Differential Amplifier

Figure 16(b) shows the ac signal circuit of a differential amplifier. For the case of an active tail bias
supply, the resistor RQ represents its small-signal ac resistance. We assume that the transistors
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Figure 16: (a) Second cascode amplifier. (b) Differential amplifier.

are identical, biased at the same currents and voltages, and have identical small-signal parameters.
Looking out of the emitter of Q1, the Thévenin voltage and resistance are given by

vte1 = ve2(oc)
RQ

RQ +RE + rie
= vtb2

RQ
RQ +RE + rie

(53)

Rte1 = RE +RQ‖ (RE + rie) (54)

Figure 17: Flow graph for vo1 for the differential amplifier.

A flow graph for the vo1 output is shown in Figure 17. The small-signal collector voltage of Q1
is given by

vo1 = vtb1 ×Gm ×− (ric‖Rtc) + vtb2
RQ

RQ +RE + rie
×−Gm ×− (ric‖Rtc)

= −Gm

(
vtb1 −

RQ
RQ +RE + rie

vtb2

)
(ric‖Rtc) (55)

By symmetry, vo2 is obtained by interchanging the subscripts 1 and 2 in this equation. The small-
signal resistance seen looking into either output is

rout = Rtc‖ric (56)
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where ric calculated with Rte = RE + RQ‖ (RE + rie). The input resistance seen by either input
with the other input grounded is rin = rib.

If RQ →∞, the expression for vo1 simplifies to

vo1 = −Gm (vtb1 − vtb2) (ric‖Rtc)

In this case Rte = 2RE + rie. The output is proportional to the difference between the two input
signals.

Differential and Common-Mode Gains

A second solution of the diff amp can be obtained by replacing vtb1 and vtb2 with differential and
common-mode components as follows:

vtb1 =
vtb1 − vtb2

2
+
vtb1 + vtb2

2
=
vi(d)
2
+ vi(cm) (57)

vtb2 =
vtb1 − vtb2

2
−
vtb1 + vtb2

2
=
vi(d)
2
− vi(cm) (58)

where vi(d) is the differential input voltage given by

vi(d) = vtb1 − vtb2 (59)

and vi(cm) is the common-mode input voltage given by

vi(cm) =
vtb1 + vtb2

2
(60)

Superposition of vi(d) and vi(cm) can be used to solve for vo1 and vo2. With vi(cm) = 0, the effects
of vtb1 = vi(d)/2 and vtb2 = −vi(d)/2 are to cause vq = 0 in Figure 16. Thus the vq node can be
grounded and the circuit can be divided into two common-emitter stages in which Rte(d) = RE for
each transistor. In this case, vo1(d) can be written

vo1(d) =
ic1(sc)
vtb1(d)

×
vo1(d)
ic1(sc)

× vtb1(d) = Gm(d) × (−ric‖Rtc)×
vi(d)
2

=
1

2
Gm(d) × (−ric‖Rtc) (vtb1 − vtb2) (61)

By symmetry vo2(d) = −vo1(d).
With vi(d) = 0, the effects of vtb1 = vtb2 = vi(cm) are to cause the emitter currents in Q1 and

Q2 to change by the same amounts. If RQ is replaced by two parallel resistors of value 2RQ, it
follows by symmetry that the circuit can be separated into two common-emitter stages each with
Rte(cm) = RE + 2RQ. In this case, vo1(cm) can be written

vo1(cm) =
ic1(sc)
vtb1(cm)

×
vo1(cm)
ic1(sc)

vtb1(cm) = Gm(cm) (−ric‖Rtc) vi(cm)

= Gm(cm) × (−ric‖Rtc)

(
vtb1 + vtb2

2

)
(62)

By symmetry vo2(cm) = vo1(cm). Note that the collector resistance ric is the same for both the
differential and common-mode solutions.

We define the differential gain Av and the common-mode gain Acm as follows:

Ad =
vo1
vi(d)

= −
vo2
vi(d)

=
1

2
Gm(d) × (−ric‖Rtc) (63)

17



Acm =
vo1
vi(cm)

= −
vo2
vi(cm)

= Gm(cm) (−ric‖Rtc) (64)

By superposition, the total solutions for the output voltages are given by

vo1 = Advi(d) +Acmvi(cm) = Ad (vtb1 − vtb2) +Acm

(
vtb1 + vtb2

2

)

=

(
Ad +

Acm
2

)
vi1 +

(
Ad +

Acm
2

)
vi2 (65)

vo2 = −Advi(d) +Acmvi(cm) = −Ad (vtb1 − vtb2) +Acm

(
vtb1 + vtb2

2

)

=

(
−Ad +

Acm
2

)
vi1 +

(
−Ad +

Acm
2

)
vi2 (66)

Although they may look different, these solutions are identical to the solutions obtained above.
The common-mode rejection ratio CMRR is defined by

CMRR =
Ad
Acm

=
Gm(d)
Gm(cm)

=

1

2

α

rie +RE
α

rie +RE + 2RQ

=
1

2
+

RQ
rie +RE

(67)

This is often expressed in dB with the relation CMRRdB = 20 log (CMRR). For a perfect differ-
ential amplifier, RQ =∞ and thus CMRR =∞. If the large r0 approximations are not used, the
CMRR becomes much more difficult to solve for and will not be covered here.

Because Rte is different for the differential and common-mode circuits, Gm and rib are different.
However, the total solution vo1 = vo1(d) + vo1(cm) is the same as that given by Eq. (55), and
similarly for vo2. Note that ric is the same for both solutions and is calculated with Rte = RE +
RQ‖ (RE + rie). The small-signal base currents can be written ib1 = vi(cm)/rib(cm)+ vi(d)/rib(d) and
ib2 = vi(cm)/rib(cm) − vi(d)/rib(d). If RQ →∞, the common-mode gain approaches zero when the r0
approximations are used, which is the case here. In this case, the differential solutions can be used
for the total solutions. If RQ � RE + rie, the common-mode solutions are often approximated by
zero to simplify working differential amplifier problems.

Small-Signal High-Frequency Models

Figure 18 shows the hybrid-π and T models for the BJT with the base-spreading resistance rx,
the base-emitter capacitance cπ, and the base-collector capacitance cµ added. The capacitor ccs is
the collector-substrate capacitance which is present in monolithic integrated-circuit devices but is
omitted in discrete devices. These capacitors model charge storage in the device which affects its
high-frequency performance. The capacitors are given by

cπ = cje +
τF IC
VT

(68)

cµ =
cjc

[1 + VCB/φC ]
mc

(69)

ccs =
cjcs

[1 + VCS/φC ]
mc

(70)

where IC is the dc collector current, VCB is the dc collector-base voltage, VCS is the dc collector-
substrate voltage, cje is the zero-bias junction capacitance of the base-emitter junction, τF is
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the forward transit time of the base-emitter junction, cjc is the zero-bias junction capacitance of
the base-collector junction, cjcs is the zero-bias collector-substrate capacitance, φC is the built-in
potential, and mc is the junction exponential factor. For integrated circuit lateral pnp transistors,
ccs is replaced with a capacitor cbs from base to substrate, i.e. from the B node to ground.

Figure 18: High-frequency small-signal models of the BJT. (a) Hybrid-π model. (b) T model.

In these models, the currents are related by

i′c = gmvπ = βi
′

b = αi
′

e (71)

These relations are the same as those in Eq. (24) with ib replaced with i
′

b.
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