© Copyright 2010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

The BJT Differential Amplifier

Basic Circuit

Figure 1 shows the circuit diagram of a differential amplifier. The tail supply is modeled as a current source I_{Q}. The object is to solve for the small-signal output voltages and output resistances. It will be assumed that the transistors are identical.

Figure 1: Circuit diagram of the differential amplifier.

DC Solution

Zero both base inputs. For identical transistors, the current I_{Q} divides equally between the two emitters.
(a) The dc currents are given by

$$
I_{E 1}=I_{E 2}=\frac{I_{Q}}{2} \quad I_{B 1}=I_{B 2}=\frac{I_{Q}}{2(1+\beta)} \quad I_{C 1}=I_{C 2}=\frac{\alpha I_{Q}}{2}
$$

(b) Verify that $V_{C B}>0$ for the active mode.

$$
V_{C B}=V_{C}-V_{B}=\left(V^{+}-\alpha I_{E} R_{C}\right)-\left(-\frac{I_{E}}{1+\beta} R_{B}\right)=V^{+}-\alpha I_{E} R_{C}+\frac{I_{E}}{1+\beta} R_{B}
$$

(e) Calculate the collector-emitter voltage.

$$
V_{C E}=V_{C}-V_{E}=V_{C}-\left(V_{B}-V_{B E}\right)=V_{C B}+V_{B E}
$$

Small-Signal AC Solution using the Emitter Equivalent Circuit

This solution uses the r_{0} approximations and assumes that the base spreading resistance r_{x} is not zero.
(a) Calculate g_{m}, r_{π}, r_{e}, and $r_{i e}$.

$$
g_{m}=\frac{I_{C}}{V_{T}} \quad r_{\pi}=\frac{V_{T}}{I_{B}} \quad r_{e}=\frac{V_{T}}{I_{E}} \quad r_{i e}=\frac{R_{B}+r_{x}+r_{\pi}}{1+\beta} \quad r_{0}=\frac{V_{A}+V_{C E}}{I_{E}}
$$

(b) Redraw the circuit with $V^{+}=V^{-}=0$. Replace the two BJTs with the emitter equivalent circuit. The emitter part of the circuit obtained is shown in Fig. 2(a).

Figure 2: (a) Emitter equivalent circuit for $i_{e 1}$ and $i_{e 2}$. (b) Collector equivalent circuits.
(c) Using Ohm's Law, solve for $i_{e 1}$ and $i_{e 2}$.

$$
i_{e 1}=\frac{v_{i 1}-v_{i 2}}{2\left(r_{i e}+R_{E}\right)} \quad i_{e 2}=-i_{e 1}
$$

(d) The circuit for $v_{o 1}, v_{o 2}$, and $r_{\text {out }}$ is shown in Fig. 2(b).

$$
\begin{gathered}
v_{o 1}=-i_{c 1(s c)} \times r_{i c}\left\|R_{C}=-\alpha \times i_{e 1} \times r_{i c}\right\| R_{C}=\frac{-\alpha \times r_{i c} \| R_{C}}{2\left(r_{i e}+R_{E}\right)}\left(v_{i 1}-v_{i 2}\right) \\
v_{o 2}=-i_{c 2(s c)} \times r_{i c}\left\|R_{C}=-\alpha \times i_{i e 2} \times r_{i c}\right\| R_{C}=\frac{-\alpha \times r_{i c} \| R_{C}}{2\left(r_{i e}+R_{E}\right)}\left(v_{i 2}-v_{i 1}\right) \\
r_{\text {out } 1}=r_{o u t 2}=r_{i c} \| R_{C} \\
r_{i c}=r_{0}\left[1+\frac{\beta\left(2 R_{E}+r_{i e}\right)}{R_{B}+r_{\pi}+r_{x}+2 R_{E}+r_{i e}}\right]+\left(R_{B}+r_{x}+r_{\pi}\right) \|\left(2 R_{E}+r_{i e}\right)
\end{gathered}
$$

(e) The resistance seen looking into either input with the other input zeroed is

$$
r_{i n}=R_{B}+r_{x}+r_{\pi}+(1+\beta)\left(2 R_{E}+r_{i e}\right)
$$

The differential input resistance $r_{i n d}$ is the resistance between the two inputs for differential input signals. For an ideal current source tail supply, this is the same as the input resistance $r_{i n}$ above.

Diff Amp with Non-Perfect Tail Supply

Fig. 3 shows the circuit diagram of a differential amplifier. The tail supply is modeled as a current source I_{Q}^{\prime} having a parallel resistance R_{Q}. In the case of an ideal current source, R_{Q} is an open circuit. Often a diff amp is designed with a resistive tail supply. In this case, $I_{Q}^{\prime}=0$. The solutions below are valid for each of these connections. The object is to solve for the small-signal output voltages and output resistances.

Figure 3: BJT Differential amplifier.

DC Solutions

This solution assumes that I_{Q}^{\prime} is known. If I_{Q} is known, the solutions are the same as above.
(a) Zero both inputs. Divide the tail supply into two equal parallel current sources having a current $I_{Q}^{\prime} / 2$ in parallel with a resistor $2 R_{Q}$. The circuit obtained for Q_{1} is shown on the left in Fig. 4. The circuit for Q_{2} is identical. Now make a Thévenin equivalent as shown in on the right in Fig. 4. This is the basic bias circuit.
(b) Make an "educated guess" for $V_{B E}$. Write the loop equation between the ground node to the left of R_{B} and V^{-}. To solve for I_{E}, this equation is

$$
0-\left(V^{-}-I_{Q}^{\prime} R_{Q}\right)=\frac{I_{E}}{1+\beta} R_{B}+V_{B E}+I_{E}\left(R_{E}+2 R_{Q}\right)
$$

(c) Solve the loop equation for the currents.

$$
I_{E}=\frac{I_{C}}{\alpha}=(1+\beta) I_{B}=\frac{-V^{-}+I_{Q}^{\prime} R_{Q}-V_{B E}}{R_{B} /(1+\beta)+R_{E}+2 R_{Q}}
$$

(d) Verify that $V_{C B}>0$ for the active mode.

$$
V_{C B}=V_{C}-V_{B}=\left(V^{+}-\alpha I_{E} R_{C}\right)-\left(-\frac{I_{E}}{1+\beta} R_{B}\right)=V^{+}-\alpha I_{E} R_{C}+\frac{I_{E}}{1+\beta} R_{B}
$$

(e) Calculate the collector-emitter voltage.

$$
V_{C E}=V_{C}-V_{E}=V_{C}-\left(V_{B}-V_{B E}\right)=V_{C B}+V_{B E}
$$

(f) If $R_{Q}=\infty$, it follows that $I_{E 1}=I_{E 2}=I_{Q}^{\prime} / 2$. If the current source is replaced with a resistor R_{Q} only, the currents are given by

$$
I_{E}=\frac{I_{C}}{\alpha}=(1+\beta) I_{B}=\frac{-V^{-}-V_{B E}}{R_{B} /(1+\beta)+R_{E}+2 R_{Q}}
$$

Figure 4: DC bias circuits for Q_{1}.

Small-Signal or AC Solutions

This solutions use the r_{0} approximations.
(a) Calculate g_{m}, r_{π}, and $r_{i e}$.

$$
g_{m}=\frac{\alpha I_{E}}{V_{T}} \quad r_{\pi}=\frac{(1+\beta) V_{T}}{I_{E}} \quad r_{i e}=\frac{R_{B}+r_{x}+r_{\pi}}{1+\beta} \quad r_{0}=\frac{V_{A}+V_{C E}}{\alpha I_{E}}
$$

(b) Redraw the circuit with $V^{+}=V^{-}=0$ and $I_{Q}^{\prime}=0$. Replace the two BJTs with the emitter equivalent circuit. The emitter part of the circuit obtained is shown in $5(\mathrm{a})$.

Figure 5: (a) Emitter equivalent circuit. (b) Collector equivalent circuits.
(c) Using superposition, Ohm's Law, and current division, solve for $i_{e 1}$ and $i_{e 2}$.

$$
i_{e 1}=\frac{v_{i 1}}{r_{i e}+R_{E}+R_{Q} \|\left(r_{i e}+R_{E}\right)}-\frac{v_{i 2}}{r_{i e}+R_{E}+R_{Q} \|\left(r_{i e}+R_{E}\right)} \times \frac{R_{Q}}{R_{Q}+r_{i e}+R_{E}}
$$

$$
i_{e 2}=\frac{v_{i 2}}{r_{i e}+R_{E}+R_{Q} \|\left(r_{i e}+R_{E}\right)}-\frac{v_{i 1}}{r_{i e}+R_{E}+R_{Q} \|\left(r_{i e}+R_{E}\right)} \times \frac{R_{Q}}{R_{Q}+r_{i e}+R_{E}}
$$

For $R_{Q}=\infty$, these become

$$
i_{e 1}=\frac{v_{i 1}-v_{i 2}}{2\left(r_{i e}+R_{E}\right)} \quad i_{e 2}=\frac{v_{i 2}-v_{i 1}}{2\left(r_{i e}+R_{E}\right)}
$$

(d) The circuit for $v_{o 1}, v_{o 2}, r_{o u t 1}$, and $r_{o u t 2}$ is shown in Fig. 6.

Figure 6: Circuits for calculating $v_{o 1}, v_{o 2}, r_{o u t 1}$, and $r_{o u t}$.

$$
\begin{gathered}
v_{o 1}=-i_{c 1}^{\prime} \times r_{i c}\left\|R_{C}=-\alpha \times i_{e 1} \times r_{i c}\right\| R_{C}=\frac{-\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}+R_{Q} \|\left(r_{i e}+R_{E}\right)}\left(v_{i 1}-v_{i 2} \frac{R_{Q}}{R_{Q}+r_{i e}+R_{E}}\right) \\
v_{o 2}=-i_{c 2}^{\prime} \times r_{i c}\left\|R_{C}=-\alpha \times i_{e 1} \times r_{i c}\right\| R_{C}=\frac{-\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}+R_{Q} \|\left(r_{i e}+R_{E}\right)}\left(v_{i 2}-v_{i 1} \frac{R_{Q}}{R_{Q}+r_{i e}+R_{E}}\right) \\
r_{\text {out } 1}=r_{o u t 2}=r_{i c} \| R_{C} \\
r_{i c}=r_{0}\left[1+\frac{\beta R_{t e}}{R_{B}+r_{\pi}+R_{t e}}\right]+\left(R_{B}+r_{x}+r_{\pi}\right)\left\|R_{t e} \quad R_{t e}=R_{E}+R_{Q}\right\|\left(r_{i e}+R_{E}\right)
\end{gathered}
$$

(e) The resistance seen looking into the $v_{i 1}\left(v_{i 2}\right)$ input with $v_{i 2}=0\left(v_{i 1}=0\right)$ is

$$
r_{i b}=R_{B}+r_{x}+r_{\pi}+(1+\beta) R_{t e}
$$

(f) Special case for $R_{Q}=\infty$.

$$
v_{o 1}=\frac{-\alpha \times r_{i c} \| R_{C}}{2\left(r_{i e}+R_{E}\right)}\left(v_{i 1}-v_{i 2}\right) \quad v_{o 2}=\frac{-\alpha \times r_{i c} \| R_{C}}{2\left(r_{i e}+R_{E}\right)}\left(v_{i 2}-v_{i 1}\right)
$$

(g) The equivalent circuit seen looking into the two inputs is shown in Fig. 7. The resistors labeled r_{π}^{\prime} are given by

$$
r_{\pi}^{\prime}=r_{x}+r_{\pi}+(1+\beta) R_{E}
$$

The differential input resistance $r_{i d}$ is defined the same way that it is defined for Fig. ??. That is, it is the resistance seen between the two inputs when $v_{i 1}=v_{i d} / 2$ and $v_{i 2}=-v_{i d} / 2$, where $v_{i d}$ is the differential input voltage. In this case, the small-signal voltage at the upper node of the resistor $(1+\beta) R_{Q}$ is zero so that no current flows it. It follows that $r_{i d}$ is given by

$$
r_{i d}=2\left(R_{B}+r_{\pi}^{\prime}\right)
$$

Figure 7: Equivalent circuits for calculating $i_{b 1}$ and $i_{b 2}$.

Differential and Common-Mode Gains

(a) Define the common-mode and differential input voltages as follows:

$$
v_{i d}=v_{i 1}-v_{i 2} \quad v_{i c m}=\frac{v_{i 1}+v_{i 2}}{2}
$$

With these definitions, $v_{i 1}$ and $v_{i 2}$ can be written

$$
v_{i 1}=v_{i c m}+\frac{v_{i d}}{2} \quad v_{i 2}=v_{i c m}-\frac{v_{i d}}{2}
$$

By linearity, it follows that superposition of $v_{i c m}$ and $v_{i d}$ can be used to solve for the currents and voltages.
(b) Redraw the emitter equivalent circuit as shown in Fig. 8.

Figure 8: Emitter equivalent circuit.
(c) For $v_{i 1}=v_{i d} / 2$ and $v_{i 2}=-v_{i d} / 2$, it follows by superposition that $v_{a}=0$ and

$$
\begin{gathered}
i_{e 1}=\frac{v_{i d} / 2}{r_{i e}+R_{E}} \quad i_{e 2}=\frac{-v_{i d} / 2}{r_{i e}+R_{E}} \\
v_{o 1}=-\alpha \times i_{e 1} \times r_{i c} \| R_{C}=\frac{-\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}} \frac{v_{i d}}{2}=\frac{-\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}}\left(\frac{v_{i 1}-v_{i 2}}{2}\right) \\
v_{o 2}=-\alpha \times i_{e 2} \times r_{i c} \| R_{C}=\frac{+\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}} \frac{v_{i d}}{2}=\frac{+\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}}\left(\frac{v_{i 1}-v_{i 2}}{2}\right)
\end{gathered}
$$

The differential voltage gain is given by

$$
A_{d}=\frac{v_{o 1}}{v_{i d}}=-\frac{v_{o 2}}{v_{i d}}=-\frac{1}{2} \frac{\alpha r_{i c} \| R_{C}}{r_{i e}+R_{E}}
$$

(d) For $v_{i 1}=v_{i 2}=v_{i c m}$, it follows by superposition that $i_{a}=0$ and

$$
\begin{gathered}
i_{e 1}=\frac{v_{i c m}}{r_{i e}+R_{E}+2 R_{Q}} \quad i_{e 2}=\frac{v_{i c m}}{r_{i e}+R_{E}+2 R_{Q}} \\
v_{o 1}=-\alpha \times i_{e 1} \times r_{i c} \| R_{C}=\frac{-\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}+2 R_{Q}} v_{i c m}=\frac{-\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}+2 R_{Q}}\left(\frac{v_{i 1}+v_{i 2}}{2}\right) \\
v_{o 2}=-\alpha \times i_{e 2} \times r_{i c} \| R_{C}=\frac{-\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}+2 R_{Q}} v_{i c m}=\frac{-\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}+2 R_{Q}}\left(\frac{v_{i 1}+v_{i 2}}{2}\right)
\end{gathered}
$$

The common-mode voltage gain is given by

$$
A_{c m}=\frac{v_{o 1}}{v_{i c m}}=\frac{v_{o 2}}{v_{i c m}}=-\frac{\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}+2 R_{Q}}
$$

(e) If the output is taken from the collector of Q_{1} or Q_{2}, the common-mode rejection ratio is given by

$$
C M R R=\left|\frac{v_{o 1} / v_{i d}}{v_{o 1} / v_{i c m}}\right|=\left|\frac{v_{o 2} / v_{i d}}{v_{o 2} / v_{i c m}}\right|=\frac{1}{2} \frac{r_{i e}+R_{E}+2 R_{Q}}{r_{i e}+R_{E}}=\frac{1}{2}+\frac{R_{Q}}{r_{i e}+R_{E}}
$$

This can be expressed in dB .

$$
C M R R_{d B}=20 \log \left(\frac{1}{2}+\frac{R_{Q}}{r_{i e}+R_{E}}\right)
$$

Example 1 For $I_{Q}^{\prime}=2 \mathrm{~mA}, R_{Q}=50 \mathrm{k} \Omega, R_{B}=1 \mathrm{k} \Omega, R_{E}=100 \Omega, R_{C}=10 \mathrm{k} \Omega, V^{+}=20 \mathrm{~V}$, $V^{-}=-20 \mathrm{~V}, V_{T}=0.025 \mathrm{~V}, r_{x}=20 \Omega, \beta=99, V_{B E}=0.65 \mathrm{~V}$, and $V_{A}=50 \mathrm{~V}$, calculate $v_{o 1}, v_{o 2}$, $v_{\text {od }}, r_{\text {out }}$, and CMRR.

Solution.

$$
\begin{gathered}
I_{E}=\frac{0-\left(V^{-}-I_{Q}^{\prime} R_{Q}\right)-V_{B E}}{R_{B} /(1+\beta)+R_{E}+2 R_{Q}}=1.192 \mathrm{~mA} \\
V_{C B}=V_{C}-V_{B}=\left(V^{+}-\alpha I_{E} R_{C}\right)-\left(-\frac{I_{E}}{1+\beta} R_{B}\right)=8.209 \mathrm{~V} \\
g_{m}=\frac{\alpha I_{E}}{V_{T}}=0.0472 \mathrm{~S} \quad r_{\pi}=\frac{(1+\beta) V_{T}}{I_{E}}=2.097 \mathrm{k} \Omega \\
r_{e}=\frac{V_{T}}{I_{E}}=20.97 \Omega \quad r_{i e}=\frac{R_{B}+r_{x}}{1+\beta}+r_{e}=31.17 \Omega \\
r_{0}=\frac{V_{A}+V_{C E}}{I_{C}}=49.869 \mathrm{k} \Omega \quad R_{t e}=R_{E}+R_{Q} \|\left(r_{i e}+R_{E}\right)=230.83 \Omega \\
r_{i c}=r_{0}\left[1+\frac{\beta\left(2 R_{E}+r_{i e}\right)}{R_{B}+r_{\pi}+2 R_{E}+r_{i e}}\right]+\left(R_{B}+r_{\pi}\right) \|\left(2 R_{E}+r_{i e}\right)=390.5 \mathrm{k} \Omega \\
v_{o 1}=\frac{-\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}+R_{Q} \|\left(r_{i e}+R_{E}\right)}\left(v_{i 1}-v_{i 2} \frac{R_{Q}}{R_{Q}+r_{i e}+R_{E}}\right)=-36.84 v_{i 1}+36.75 v_{i 2} \\
v_{o 2}=-36.84 v_{i 2}+36.75 v_{i 1}
\end{gathered}
$$

$$
\begin{gathered}
r_{o u t}=r_{i c} \| R_{C}=9.75 \mathrm{k} \Omega \\
A_{v d}=-\frac{1}{2} \frac{\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}}=-36.80 \\
A_{v c m}=\frac{-\alpha \times r_{i c} \| R_{C}}{r_{i e}+R_{E}+2 R_{Q}}=-0.0964 \\
C M R R_{d B}=20 \log \left|\frac{A_{v d}}{A_{v c m}}\right|=51.63 \mathrm{~dB}
\end{gathered}
$$

The Diff Amp with an Active Load

Figure 9 shows a BJT diff amp with an active load formed by a current mirror with base current compensation. Similar circuits are commonly seen as the input stages of operational amplifiers and audio amplifiers. The object is to solve for the open-circuit output voltage $v_{o c}$, the short-circuit output current $i_{s c}$, and the output resistance $r_{\text {out }}$. By Thévenin's theorem, these are related by the equation $v_{o c}=i_{s c} r_{\text {out }}$. It will be assumed that the current mirror consisting of transistors $Q_{3}-Q_{5}$ is perfect so that its output current is equal to its input current, i.e. $i_{c 4}=i_{c 1}$. In addition, the r_{0} approximations will be used in solving for the currents. That is, the Early effect will be neglected except in solving for $r_{\text {out }}$. For the bias solution, it will be assumed that the tail bias current I_{Q} splits equally between Q_{1} and Q_{2} so that $I_{E 1}=I_{E 2}=I_{Q} / 2$.

Figure 9: Diff amp with active current-mirror load.
Because the tail supply is assumed to be a current source, the common-mode gain of the circuit is zero when the r_{0} approximations are used. In this case, it can be assumed that the two input signals are pure differential signals that can be written $v_{i 1}=v_{i d} / 2$ and $v_{i 2}=-v_{i d} / 2$. For differential input signals, it follows by symmetry that the signal voltage is zero at the node above the tail current
supply I_{Q}. Following the analysis above, the small-signal collector currents in Q_{1} and Q_{2} are given by

$$
i_{c 1(s c)}=\frac{\alpha}{r_{i e}+R_{E}} \frac{v_{i d}}{2} \quad i_{c 2(s c)}=-\frac{\alpha}{r_{i e}+R_{E}} \frac{v_{i d}}{2}
$$

where

$$
r_{i e}=\frac{R_{B}+r_{\pi}}{1+\beta}
$$

The short-circuit output current is given by

$$
i_{s c}=i_{c 4}-i_{c 2}
$$

With $i_{c 4}=i_{c 3}=i_{c 1}$ and $i_{c 2}=-i_{c 1}$, this becomes

$$
i_{s c}=2 i_{c 1(s c)}=\frac{\alpha}{r_{i e}+R_{E}} v_{i d}=\frac{\alpha}{r_{i e}+R_{E}}\left(v_{i 1}-v_{i 2}\right)
$$

The output resistance is given by

$$
r_{o u t}=r_{04} \| r_{i c 2}
$$

where $r_{i c 2}$ is given by

$$
r_{i c 2}=r_{0}\left[1+\frac{\beta\left(2 R_{E}+r_{i e}\right)}{R_{B}+r_{\pi}+2 R_{E}+r_{i e}}\right]+\left(R_{B}+r_{\pi}\right) \|\left(2 R_{E}+r_{i e}\right)
$$

By Thévenin's theorem, the small-signal open-circuit output voltage is given by

$$
v_{o c}=i_{s c} r_{o u t}=\frac{\alpha\left(r_{04} \| r_{i c 2}\right)}{r_{i e}+R_{E}}\left(v_{i 1}-v_{i 2}\right)
$$

Example 2 For $I_{Q}=2 \mathrm{~mA}, R_{B}=100 \Omega, R_{E}=51 \Omega, V^{+}=15 \mathrm{~V}, V^{-}=-15 \mathrm{~V}, V_{T}=0.025 \mathrm{~V}$, $r_{x}=50 \Omega, \beta=99, \alpha=0.99 V_{B E 1}=V_{B E 2}=0.65 \mathrm{~V}, V_{E B 3}=V_{E B 4}=V_{E B 5}=0.65 \mathrm{~V}, V_{C 2}=$ $V_{C 4}=13.7 \mathrm{~V}$, and $V_{A}=50 \mathrm{~V}$, calculate $i_{s c}$, $r_{o u t}$, and $v_{o c}$. Because $r_{x}>0$, we add it to R_{B} in the equations above.

$$
\begin{gathered}
\text { Solution. } r_{e 1}=r_{e 2}=\frac{2 V_{T}}{I_{Q}}=25 \Omega \quad r_{i e 1}=r_{i e 2}=\frac{R_{B}+r_{x}}{1+\beta}+r_{e}=26.5 \Omega \\
R_{t e 2}=2 R_{E}+r_{i e 1}=128.5 \Omega \quad i_{s c}=\frac{\alpha}{r_{i e}+R_{E}}\left(v_{i 1}-v_{i 2}\right)=0.0128\left(v_{i 1}-v_{i 2}\right) \\
r_{02}=\frac{V_{A}+\left(V_{C 2}+V_{B E}\right)}{\alpha I_{Q} / 2}=65 \mathrm{k} \Omega \quad r_{i c 2}=r_{0}\left[1+\frac{\beta R_{t e}}{R_{B}+r_{\pi}+R_{t e}}\right]+\left(R_{B}+r_{\pi}\right) \| R_{t e}=362.7 \mathrm{k} \Omega \\
r_{04}=\frac{V_{A}+\left(V^{+}-V_{C 4}\right)}{I_{Q}}=51.82 \mathrm{k} \Omega \quad r_{o u t}=r_{04} \| r_{i c 2}=45.34 \mathrm{k} \Omega \\
v_{o c}=i_{s c} r_{o u t}=579.2\left(v_{i 1}-v_{i 2}\right)
\end{gathered}
$$

This is a dB gain of 55.3 dB .

