(c) Copyright 2010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

The Common-Collector Amplifier

Basic Circuit

Fig. 1 shows the circuit diagram of a single stage common-collector amplifier. The object is to solve for the small-signal voltage gain, input resistance, and output resistance.

Figure 1: Common-collector amplifier.

DC Solution

(a) Replace the capacitors with open circuits. Look out of the 3 BJT terminals and make Thévenin equivalent circuits as shown in Fig. 2.

$$
\begin{gathered}
V_{B B}=\frac{V^{+} R_{2}+V^{-} R_{1}}{R_{1}+R_{2}} \quad R_{B B}=R_{1} \| R_{2} \\
V_{E E}=V^{-} \quad R_{E E}=R_{E} \quad V_{C C}=V^{+} \quad R_{C C}=R_{C}
\end{gathered}
$$

(b) Make an "educated guess" for $V_{B E}$. Write the loop equation between the $V_{B B}$ and the $V_{E E}$ nodes.

$$
V_{B B}-V_{E E}=I_{B} R_{B B}+V_{B E}+I_{E} R_{E E}=\frac{I_{C}}{\beta} R_{B B}+V_{B E}+\frac{I_{C}}{\alpha} R_{E E}
$$

(c) Solve the loop equation for the currents.

$$
I_{C}=\alpha I_{E}=\beta I_{B}=\frac{V_{B B}-V_{E E}-V_{B E}}{R_{B B} / \beta+R_{E E} / \alpha}
$$

(d) Verify that $V_{C B}>0$ for the active mode.

$$
V_{C B}=V_{C}-V_{B}=\left(V_{C C}-I_{C} R_{C C}\right)-\left(V_{B B}-I_{B} R_{B B}\right)=V_{C C}-V_{B B}-I_{C}\left(R_{C C}-R_{B B} / \beta\right)
$$

Figure 2: Bias circuit.

Small-Signal or AC Solutions

(a) Redraw the circuit with $V^{+}=V^{-}=0$ and all capacitors replaced with short circuits as shown in Fig. 3.

Figure 3: Signal circuit.
(b) Calculate g_{m}, r_{π}, r_{e}, and r_{0} from the DC solution.

$$
g_{m}=\frac{I_{C}}{V_{T}} \quad r_{\pi}=\frac{V_{T}}{I_{B}} \quad r_{e}=\frac{V_{T}}{I_{E}} \quad r_{0}=\frac{V_{A}+V_{C E}}{I_{C}}
$$

(c) Replace the circuits looking out of the base with a Thévenin equivalent circuit as shown in Fig. 4.

$$
v_{t b}=v_{s} \frac{R_{1} \| R_{2}}{R_{s}+R_{1} \| R_{2}} \quad R_{t b}=R_{1} \| R_{2}
$$

Exact Solution

(a) Replace the BJT in Fig. 4 with the Thévenin base emitter circuits as shown in Fig. 5.

$$
v_{e(o c)}=v_{t b}
$$

Figure 4: Signal circuit with Thévenin base circuit.

Figure 5: Base and emitter equivalent circuits.
(b) Solve for the voltage gain. The flow graph is shown in Figure 6. It is given by

$$
A_{v}=\frac{v_{e}}{v_{s}}=\frac{v_{t b}}{v_{s}} \times \frac{v_{e}}{v_{t b}}=\frac{R_{1} \| R_{2}}{R_{s}+R_{1} \| R_{2}} \times \frac{R_{E} \| R_{L}}{r_{i e}+R_{E} \| R_{L}}
$$

Figure 6: Flow graph for the voltage gain.
(c) Solve for $r_{i n}$.

$$
r_{i n}=R_{1}\left\|R_{2}\right\| r_{i b} \quad r_{i b}=r_{\pi}+(1+\beta) R_{t e}
$$

(d) Solve for $r_{\text {out }}$.

$$
r_{o u t}=r_{i e} \| R_{E}
$$

Example 1 For the CC amplifier in Fig. 1, it is given that $R_{S}=5 \mathrm{k} \Omega, R_{1}=120 \mathrm{k} \Omega$, $R_{2}=100 \mathrm{k} \Omega, R_{E}=5.6 \mathrm{k} \Omega, R_{L}=20 \mathrm{k} \Omega, V^{+}=15 \mathrm{~V}, V^{-}=-15 \mathrm{~V}, V_{B E}=0.65 \mathrm{~V}, \beta=99$, $\alpha=0.99, r_{x}=20 \Omega, V_{A}=100 \mathrm{~V}$ and $V_{T}=0.025 \mathrm{~V}$. Solve for $A_{v}, r_{\text {in }}$, and $r_{\text {out }}$.

Solution. Because the dc bias circuit is the same as for the common-emitter amplifier example, the dc bias values, r_{e}, g_{m}, r_{π}, and r_{0} are the same. They are

$$
\begin{gathered}
r_{0}=\frac{V_{A}+V_{C E}}{\alpha I_{E}}=52.18 \mathrm{k} \Omega \quad g_{m}=\frac{I_{C}}{V_{T}}=\frac{2.092}{25}=\frac{1}{11.95} \mathrm{~S} \\
r_{\pi}=\frac{V_{T}}{I_{B}}=\frac{\beta V_{T}}{I_{C}}=\frac{99 \times 25}{2.113}=1.183 \mathrm{k} \Omega \quad r_{e}=\frac{V_{T}}{I_{E}}=11.83 \Omega
\end{gathered}
$$

Note that the base spreading resistance r_{x} is non zero.
The Thévenin voltage and resistance seen looking out of the base are given by

$$
v_{t b}=\frac{R_{1} \| R_{2}}{R_{S}+R_{1} \| R_{2}} v_{s}=0.916 v_{s} \quad R_{t b}=R_{S}\left\|R_{1}\right\| R_{2}=4.58 \mathrm{k} \Omega
$$

The Thévenin resistance seen looking out of the emitter is

$$
R_{t e}=R_{E} \| R_{L}=4.375 \mathrm{k} \Omega
$$

Next, we calculate $r_{i e}$ and $r_{i b}$.

$$
\begin{gathered}
r_{i e}=\frac{R_{t b}+r_{x}}{1+\beta}+r_{e}=57.83 \Omega \\
r_{i b}=r_{x}+r_{\pi}+(1+\beta) R_{t e}=407 \mathrm{k} \Omega
\end{gathered}
$$

The voltage gain is given by

$$
A_{v}=\frac{v_{t b}}{v_{s}} \times \frac{v_{e}}{v_{t b}}=\frac{R_{1} \| R_{2}}{R_{S}+R_{1} \| R_{2}} \times \frac{R_{t e}}{r \times_{i e}+R_{t e}}=0.916 \times \frac{4.375 \mathrm{k}}{57.83+4.375 \mathrm{k}}=0.904
$$

The input and output resistances are given by

$$
r_{\text {in }}=R_{1}\left\|R_{2}\right\| r_{i b}=48.8 \mathrm{k} \Omega \quad r_{\text {out }}=r_{i e} \| R_{E}=57.2 \Omega
$$

