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Frequency Response of the CE Amplifier

Midband Voltage Gain

The figure shows the signal circuit of the common-emitter amplifier. There are three capacitors in the
circuit. At the mid frequency band, these are considered to be short circuits. When r0 is neglected except
in calculating the collector output impedance ric, the midband voltage gain from vs to vo can be written

Av =
R1‖R2

Rs +R1‖R2
×

1

rie +Rte
× α× (−ric‖RC‖RL)

Rtb = RS‖R1‖R2 Rte = RE‖R3 rie =
Rtb + rx + rπ

1 + β
ric = r0

(
1 +

βRte

Rtb + rx + rπ +Rte

)
+Rte

This solution corresponds to the third solution found in the class notes on the common-emitter amplifier.

Effect of C1

At low frequencies, C1 is an open circuit and the gain is zero. Thus C1 has a high pass effect on the gain, i.e.
it affects the lower cutoff frequency of the amplifier. To account for C1, Av is multiplied by the high-pass
transfer function

T1 (s) =
τ1s

1 + τ1s

where τ1 is the time constant for C1. The worst case time constant for the calculation of the lower cutoff
frequency is the smallest value, i.e. the value which predicts the highest pole frequency. For this to be the
case, the base input resistance rib must be calculated with C3 a short circuit. This makes rib its smallest
possible value. Imagine C1 being replaced with an ohmmeter with the source zeroed. The time constant is
given by the resistance measured by the ohmmeter multiplied by C1.

τ1 = (RS +R1‖R2‖rib)C1 rib = rx + rπ + (1 + β)Rte

The pole frequency is given by

f1 =
1

2πτ1
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Effect of C2

Capacitor C2 also has a high pass effect on the gain. To account for C2, Av is multiplied by the high-pass
transfer function

T2 (s) =
τ2s

1 + τ2s

where τ2 is the time constant for C2. The worst case time constant for the calculation of the lower cutoff
frequency is the smallest value, i.e. the value which predicts the highest pole frequency. For this to be the
case, the collector input resistance ric must be calculated with C1 and C3 short circuits. This makes ric its
smallest possible value. Imagine C2 being replaced with an ohmmeter with the source zeroed. The time
constant is given by the resistance measured by the ohmmeter multiplied by C2.

τ2 = (RC‖ric +RL)C2 ric = r0

(
1 +

βRte

Rtb + rx + rπ +Rte

)
+Rte

The pole frequency is given by

f2 =
1

2πτ2

Effect of C3

When capacitor C3 is an open circuit or a short circuit, the gain is not zero. Thus C3 must have the effect
of a shelving transfer function. The gain is the highest when Rte is has the smallest value. This occurs
when C3 is a short circuit. Thus C3 must have a high pass shelving effect on the gain. The expression for
Av above shows that the gain is inversely proportional to rie +Rte. Let this impedance be denoted by Ze.
When C3 is included, the two-terminal impedance theorem can be used to write

Ze = (rie +RE)
1 + (rie‖RE +R3)C3s

1 + (RE +R3)C3s

It follows that C3 can be accounted for by multiplying Av by the shelving transfer function

T3 (s) = K
1 + τ3zs

1 + τ3ps
K =

τ3p

τ3z

The value of K is chosen to make the high-frequency asymptotic value of T3 (jω) unity. From the expression
for Ze, the time constants τ3p and τ3z are given by

τ3p = (rie‖RE +R3)C3 rie =
Rtb + rx
1 + β

+ re τ3z = (RE +R3)C3

The pole and zero frequencies are given by

f3p =
1

2πτ3p
f3z =

1

2πτ3z

Worst-Case Lower Cutoff Frequency fL

The lower cutoff frequency of the amplifier is approximately given by

fL �

√∑

i

f2pi − 2
∑

i

f2zi

where fpi are the pole frequencies and fzi are the zero frequencies. This equation gives the worst case value
for fL. That is, the actual lower cutoff frequency cannot be larger than the value predicted by this equation.
The frequency that dominates is the highest pole frequency.
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High-Frequency Circuit

The figure shows that high-frequency equivalent circuit. The internal capacitors cπ and cµ cause the high-
frequency gain to roll off. Each has a low-pass effect on the voltage gain. Note that both connect to the
internal base node (the B’ node). At high frequencies, C1 through C3 are all short circuits. The time
constant for cπ is calculated with cµ an open circuit and the time constant for cµ is calculated with cπ an
open circuit. Because cµ connects the collector output back into the base circuit, it must be replaced by
separate capacitors from base to ground and from collector to ground using the Miller theorem.

Effect of cµ

In applying the Miller theorem, a capacitor cµb is placed from the B’ node to ground and a capacitor cµc is
placed from collector node to ground. These are given by

cµb = (1−K) cµ cµc = cµ

where K is the voltage gain from the B’ node to the collector node. This is given by the equation for Av
with Rtb = 0 and rx = 0.

K =
−ric‖RC‖RL
1

gm
+
Rte

α

=
−ric‖RC‖RL
re +Rte
α

Because K is negative, 1−K is a positive number. The equivalent circuit is shown in the figure.

The pole time constant for cµ is given by the sum of the time constants for cµb and cµc. Imagine cµb
being replaced with an ohmmeter. The time constant for cµb is given by the resistance measured by the
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ohmmeter multiplied by cµb.

τµb = [(Rtb + rx) ‖ (r
′

ib)] cµb r′ib = rπ + (1 + β)Rte

Imagine cµc being replaced with an ohmmeter. The time constant for cµc is given by the resistance measured
by the ohmmeter multiplied by cµc.

τµc = (ric‖RC‖RL) cµc

The time constant for cµ is the sum of these two time constants.

τµ = [(Rtb + rx) ‖ (rib − rx)] cµb + (ric‖RC‖RL) cµc

The pole frequency caused by cµ is given by

fµ =
1

2πτµ

Effect of cπ

In the π model, cπ is in parallel with rπ. The collector current is proportional to the voltage vπ across this
parallel combination. When cπ becomes a short circuit at high frequencies, the voltage vπ is zero. Thus cπ
must have a low-pass filter effect. To calculate the time constant, it will be assumed that r0 is an open circuit
in the small-signal model. Looking out of the emitter in the π model, the Thévenin voltage and resistance
are given by

vth = gmvπRte Rth = Rte

The figure shows the π model of the base-emitter circuit with the Thévenin equivalent emitter circuit.

Voltage division can be used to write the equation by inspection for vπ as a function of the difference
voltage (vtb − gmvπRte). The pole time constant is the time constant for cπ. The equation for vπ is

vπ = (vtb − gmvπRte)

rπ

1 + rπcπs

Rtb + rx +
rπ

1 + rπcπs
+Rte

Note that vπ occurs on both sides of the equal sign. The equation can be solved for vπ to obtain

vπ = vtb

rπ

Rtb + rx + rπ +Rte

1 + gmRte
rπ

Rtb + rx + rπ +Rte

1

1 + τπs

where

τπ =
(Rtb + rx +Rte) rπ

Rtb + rx + rπ + (1 + β)Rte
cπ
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The pole frequency caused by cπ is

fπ =
1

2πτπ

For the case Rte = 0, cπ connects to ground from the B’ node. In this case cπ can be added to the
capacitor cµb obtained above with the Miller Theorem. The time constant for the sum of the two capacitors
is

τsum = [(Rtb + rx) ‖rπ] (cπ + cµb)

Worst-Case Upper Cutoff Frequency fU

The upper cutoff frequency of the amplifier is approximately given by

fU �




√∑

i

f−2pi − 2
∑

i

f−2zi





−1

where fpi are the pole frequencies and fzi are the zero frequencies. Note that there are no zero frequencies
predicted by the analysis. This equation gives the worst case value for fU . That is, the actual upper cutoff
frequency cannot be smaller than the value predicted by the equation. The frequency that dominates is the
lowest pole frequency.
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