BJT Differential Amplifier Example

$\mathrm{R}_{\mathrm{P}}(\mathrm{x}, \mathrm{y}):=\frac{\mathrm{x} \cdot \mathrm{y}}{\mathrm{x}+\mathrm{y}} \quad$ Function for calculating parallel resistors.
$\mathrm{R}_{\mathrm{C}}:=20000 \quad \mathrm{R}_{\mathrm{B}}:=1000 \quad \mathrm{R}_{\mathrm{E}}:=100 \quad \mathrm{I}_{\mathrm{Q}}:=0.001$
$\mathrm{V}_{\mathrm{p}}:=20 \quad \mathrm{~V}_{\mathrm{m}}:=-20 \quad \mathrm{~V}_{\mathrm{BE}}:=0.65 \quad \mathrm{~V}_{\mathrm{T}}:=0.025 \quad \beta:=199 \quad \alpha:=\frac{\beta}{1+\beta}$
$\mathrm{r}_{\mathrm{x}}:=20 \quad \mathrm{r}_{0}:=50000$

There are two ac solutions, one for the second input zeroed and one for the first input zeroed. By superposition, the total solution would the be sum of these two. To keep Mathcad happy, all source voltages are taken to be equal to 1 V so that the output voltage is equal to the voltage gain. In general, the output voltage is equal to the voltage gain multiplied by the source voltage.

DC Bias Solution

$$
\mathrm{I}_{\mathrm{E} 1}:=\frac{\mathrm{I}}{2} \quad \quad \mathrm{I}_{\mathrm{E} 1}=5 \cdot 10^{-4} \quad \mathrm{I}_{\mathrm{E} 2}:=\mathrm{I}_{\mathrm{E} 1}
$$

$$
\mathrm{V}_{\mathrm{C} 1}:=\mathrm{V}_{\mathrm{p}}-\alpha \cdot \mathrm{I}_{\mathrm{E} 1} \cdot \mathrm{R}_{\mathrm{C}} \quad \mathrm{~V}_{\mathrm{C} 1}=10.05
$$

$$
\mathrm{V}_{\mathrm{B} 1}:=\frac{-\mathrm{I} \mathrm{E} 1}{1+\beta} \cdot \mathrm{R}_{\mathrm{B}} \quad \mathrm{~V}_{\mathrm{B} 1}=-2.5 \cdot 10^{-3}
$$

$$
\mathrm{V}_{\mathrm{CB} 1}:=\mathrm{V}_{\mathrm{C} 1}-\mathrm{V}_{\mathrm{B} 1} \quad \mathrm{~V}_{\mathrm{CB} 1}=10.0525 \quad \text { Thus active mode. Same for } \mathrm{Q} 2 .
$$

$$
\mathrm{r}_{\mathrm{e} 1}:=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{E} 1}} \quad \mathrm{r}_{\mathrm{e} 1}=50 \quad \mathrm{r}_{\mathrm{e} 2}:=\mathrm{r}_{\mathrm{e} 1}
$$

$$
\mathrm{r}_{\mathrm{e} 1}^{\prime}:=\frac{\mathrm{R}_{\mathrm{B}}+\mathrm{r}_{\mathrm{x}}}{1+\beta}+\mathrm{r}_{\mathrm{e} 1} \quad \mathrm{r}^{\prime} \mathrm{e} 1=55.1 \quad \quad \mathrm{r}^{\prime} \mathrm{e} 2:=\mathrm{r}^{\prime} \mathrm{e} 1
$$

AC Solutions

Circuit for the first output.

Voltage gain from first input to first output:

$$
\begin{array}{ll}
\mathrm{i}_{\mathrm{c} 1 \mathrm{sc}}:=\mathrm{G}_{\mathrm{mb} 1} \cdot \mathrm{v}_{\mathrm{tb} 1} & \mathrm{i}_{\mathrm{c} 1 \mathrm{sc}}=2.9941 \cdot 10^{-3} \\
\mathrm{v}_{\mathrm{o} 1}:=-\mathrm{i}_{\mathrm{clsc}} \cdot \mathrm{R}_{\mathrm{P}}\left(\mathrm{r}_{\mathrm{ic} 1}, \mathrm{R}_{\mathrm{C}}\right) & \mathrm{A}_{\mathrm{v} 1}:=\mathrm{v}_{\mathrm{o} 1}
\end{array}
$$

$$
\mathrm{A}_{\mathrm{v} 1}=-56.0705 \quad \text { This is the voltage gain from the first input }
$$ to the first output. The gain from the second input to the second output is the same.

Voltage gain from the second input to the first output.

$$
\begin{array}{ll}
\mathrm{i}_{\mathrm{c} 1 \mathrm{sc}}:=-\mathrm{G}_{\mathrm{me} 1} \cdot \mathrm{v}_{\text {te } 1} & \mathrm{i}_{\mathrm{c} 1 \mathrm{sc}}=-2.9942 \cdot 10^{-3} \\
\mathrm{v}_{\mathrm{o} 1}:=-\mathrm{i}_{\mathrm{c} 1 \mathrm{sc}} \cdot \mathrm{R}_{\mathrm{P}}\left(\mathrm{r}_{\mathrm{ic} 1}, \mathrm{R}_{\mathrm{C}}\right) & \mathrm{A}_{\mathrm{v} 2}:=\mathrm{v}_{\mathrm{o} 1}
\end{array}
$$

$$
\mathrm{A}_{\mathrm{v} 2}=56.0725 \quad \text { This is the voltage gain from the second }
$$ input to the first output. The gain from the first input to the second output is the same.

$\mathrm{v}_{\mathrm{o} 1}:=-56.0705 \cdot \mathrm{v}_{\mathrm{i} 1}+56.0725 \cdot \mathrm{v}_{\mathrm{i} 2} \quad$ This is the sum ac output from Q1.
$\mathrm{v}_{\mathrm{o} 2}:=-56.0705 \cdot \mathrm{v}_{\mathrm{i} 2}+56.0725 \cdot \mathrm{v}_{\mathrm{i} 1} \quad$ This is the sum ac output from Q2.

Differential input resistance.

$r_{i b 1}:=r_{x}+(1+\beta) \cdot\left(r_{e 1}+R_{P}\left(R_{\text {te1 }}, r_{0}+R_{C}\right)\right)-\frac{\beta \cdot R_{\text {te } 1} \cdot R_{C}}{R_{\text {te } 1}+r_{0}+R_{C}}$
$r_{i b 1}=4.95 \cdot 10^{4} \quad r_{i b 2}:=r_{i b 1}$
$r_{i d}:=2 \cdot R_{B}+r_{i b 1}+r_{i b 2} \quad r_{i d}=1.01 \cdot 10^{5}$

Common-Mode Rejection Ratio

$$
A_{\mathrm{V} 1}=-56.0705 \quad A_{\mathrm{v} 2}=56.0725
$$

Let us take the output from the collector of the first transistor. Because neither β nor r_{0} is infinity, the two voltage gains are not equal. This causes the CMRR to be non infinite. We calculate it below.

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{id}}:=1 & \mathrm{v}_{\mathrm{i} 1}:=\frac{\mathrm{v}_{\mathrm{id}}}{2} \\
\mathrm{v}_{\mathrm{o} 1}:=\mathrm{A}_{\mathrm{v} 1} \cdot \mathrm{v}_{\mathrm{i} 1}+\mathrm{A}_{\mathrm{v} 2} \cdot \mathrm{v}_{\mathrm{i} 2} & \mathrm{v}_{\mathrm{id}} \\
2 & \mathrm{~A}_{\mathrm{d}}:=\mathrm{v}_{\mathrm{o} 1}
\end{array}
$$

$$
A_{d}=-56.0715 \quad \text { This is the differential voltage gain }
$$

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{icm}}:=1 & \mathrm{v}_{\mathrm{i} 1}:=\mathrm{v}_{\mathrm{icm}}:=\mathrm{v}_{\mathrm{icm}} \\
\mathrm{v}_{\mathrm{o} 1}:=\mathrm{A}_{\mathrm{v} 1} \cdot \mathrm{v}_{\mathrm{i} 1}+\mathrm{A}_{\mathrm{v} 2} \cdot \mathrm{v}_{\mathrm{i} 2} & \text { A }_{\mathrm{cm}}:=\mathrm{v}_{\mathrm{o} 1}
\end{array}
$$

$$
\mathrm{A}_{\mathrm{cm}}=1.9938 \cdot 10^{-3} \quad \text { This is the common mode voltage gain. }
$$

$$
\mathrm{CMRR}:=\left|\frac{\mathrm{A}_{\mathrm{d}}}{\mathrm{~A}_{\mathrm{cm}}}\right| \quad \quad \mathrm{CMRR}=2.8123 \cdot 10^{4}
$$

$$
\operatorname{CMRR}_{\mathrm{dB}}:=20 \cdot \log (\mathrm{CMRR}) \quad \mathrm{CMRR}_{\mathrm{dB}}=88.9811
$$

If R_{Q} (the ac resistance of the current source) is not infinity, the CMRR would be lower.

Solution with the r_{0} approximations. We neglect r_{0} except in calculating r_{ic}. Thus we can use the emitter equivalent circuit to solve for $\mathrm{i}_{\mathrm{e} 1}$ and $\mathrm{i}_{\mathrm{e} 2}$, then multiply by α to solve for the collector currents. Because the common mode gain is zero if we neglect r_{0}, we will assume a differential input signal.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{id}}:=1 \quad \mathrm{v}_{\mathrm{i} 1}:=\frac{\mathrm{v}_{\mathrm{id}}}{2} \\
& \mathrm{i}_{\mathrm{e} 1}:=\frac{\mathrm{v}_{\mathrm{i} 2}:=\frac{-\mathrm{v}_{\mathrm{id}}}{2} \quad \text { Differential input signal of } 1 \mathrm{~V} .}{\mathrm{r}_{\mathrm{i} 1}-\mathrm{v}_{\mathrm{e} 2}+2 \cdot \mathrm{R}_{\mathrm{E}}+\mathrm{r}_{\mathrm{ie} 2}} \quad \mathrm{i}_{\mathrm{e} 1}=3.012 \cdot 10^{-3} \quad \mathrm{i}_{\mathrm{e} 2}:=-\mathrm{i}_{\mathrm{e} 1}
\end{aligned}
$$

$\mathrm{v}_{\mathrm{o} 1}:=-\alpha \cdot \mathrm{i}_{\mathrm{e} 1} \cdot \mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{\mathrm{C}}, \mathrm{r}_{\mathrm{ic} 1}\right) \quad \mathrm{v}_{\mathrm{o} 1}=-56.1236 \begin{aligned} & \text { This is the differential voltage gain to the first } \\ & \text { output. }\end{aligned}$
$\mathrm{v}_{\mathrm{o} 2}:=-\mathrm{v}_{\mathrm{o} 1} \quad \mathrm{v}_{\mathrm{o} 2}=56.1236$ This is the differential voltage gain to the second output.
$r_{i b 1}:=r_{x}+(1+\beta) \cdot\left(r_{e 1}+R_{t e 1}\right) \quad r_{i b 1}=6.54 \bullet 10^{4} \quad r_{i b 2}:=r_{i b 1}$
$r_{i d}:=2 \cdot R_{B}+r_{i b 1}+r_{i b 2} \quad r_{i d}=1.328 \cdot 10^{5} \quad$ This is the differential input resistance.

There is more error using the r_{0} approximations than I had expected for this problem. Usually the answers are much closer. The major cause of the error here is the effect of r_{0} on $r_{i e}$. If r_{0} is infinity, then $r_{i e}$ is equal to $r^{\prime} e^{\text {. There is a fairly big difference between these two resistances in }}$ this problem.

