The BJT

BJT Device Equations

Figure 1 shows the circuit symbols for the npn and pnp BJTs. In the active mode, the collector-base
junction is reverse biased and the base-emitter junction is forward biased. Because of recombina-
tions of the minority and majority carriers, the equations for the currents can be divided into three
regions: low, mid, and high. For the npn device, the currents are given by
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where all leakage currents that are a function of vop have been neglected. In the current equations,
Is is the saturation current and [y is the mid-level base-to-collector current gain. These are
functions of the collector-base voltage and are given by
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Figure 1: BJT circuit symbols.

In the equations for ip and ic, V4 is the Early voltage and Isp and (), respectively, are the
zero bias values of Is and Br. The constant n is the emission coefficient or ideality factor of the
base-emitter junction. It accounts for recombinations of holes and electrons in the base-emitter



junction at low levels. Its value, typically in the range 1 < n < 4, is determined by the slope of
the plot of In (i¢) versus vpg at low levels. The default value in SPICE is n = 1.5. The constant
Isg is determined by the value of ip where transition from the low-level to the mid-level region
occurs. The constant [x is determined by the value of i where transition from the mid-level to
the high-level region occurs. Note that Is/8pr = Iso/B g so that ip is not a function of vep in the
mid-level region. The equations apply to the pnp device if the subscripts BE and CB are reversed.

Figure 2 shows a typical plot of i¢ versus vpg for vog constant. The plot is called the transfer
characteristics. There is a threshold voltage above which the current appears to increase rapidly.
This voltage is typically 0.5 to 0.6 V. In the forward active region, the base-to-emitter voltage is
typically 0.6 to 0.7 V. Figure 3 shows typical plots of i¢ versus vog for ig constant. The plots are
called the output characteristics. Note that the slope approaches a constant as vog is increased. If
the straight line portions of the curves are extended back so that they intersect the vop axis, they
would intersect at the voltage vop = —Va + vpg ~ —Va. For vog small, vgg > vog and the BJT
is in the saturation region.
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Figure 2: Typical plot of i¢ versus vpg for vog constant.
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Figure 3: Plots of i¢ versus vog for ip constant.

In the Gummel-Poon model of the BJT, the current equations are combined to write the general
equations for ig and i¢ as follows:
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Fig. 4 illustrates typical plots of In (i) and In (ig) versus vpg, where it is assumed that vop

is held constant. At low levels, the i¢ curve exhibits a slope m = 1 while the ig curve exhibits a

slope m = 1/n, where the value n = 1.5 has been used. At mid levels, both curves exhibit a slope

m = 1. At high levels, the i¢ curve exhibits a slope m = 1/2 while the ip curve exhibits a slope

m = 1. It follows that the ratio of i¢ to ip is approximately constant at mid levels and decreases
at low and high levels.

where K, is given by

In(i.) and In(ig)

YBE
Figure 4: Example plots of In (i¢) and In (ig) versus vpg.

Current Gains

Let the collector and base currents be written as the sum of a dc component and a small-signal ac
component as follows:
ic=1Ic+ 1. (12)
i =1+ 1 (13)
The dc current gain (g, is defined as the ratio of I¢ to Ig. It is straightforward to show that it
is given by
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Because B and Ig are functions of the collector-base voltage Vip, it follows that Bpq. is a
function of both I¢ and Vpp. If vop is held constant so that the change in i¢ is due to a change
in vpg, the small-signal change in base current can be written
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where (p,. is the small-signal ac current gain given by
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Note that Bp,. is defined for a constant vcp. In the small-signal models, it is common to define
the small-signal ac current gain with vog constant, i.e. v, = 0. This is defined in the next section,
where the symbol ( is used.

Typical plots of the two current gains as a function of Io are shown in Fig. 5 where log scales
are used. At low levels, the gains decrease with decreasing I because the base current decreases
at a slower rate than the collector current. At high levels, the gains decrease with increasing I¢
because the collector current increases at a slower rate than the base current. At mid levels, both
gains are approximately constant and have the same value. In the figure, the mid-level range is
approximately two decades wide.
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Figure 5: Log-log plots of Bp4. and Br,. as functions of I¢.

The emitter-collector dc current gain agq. is defined as the ratio of the dc collector current Io
to the dc emitter current Ig. To solve for this, we can write
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Thus the dc currents are related by the equations

Ic = Bracls = ardclE (19)

Bias Equation

Figure 6(a) shows the BJT with the external circuits represented by Thévenin dc circuits. If the
BJT is biased in the active region, we can write
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This equation can be solved for I to obtain

_ VB — VEE — VBE (21)
RpB/Brac + REE/Fdc

It can be seen from Fig. 2 that large changes in Io are associated with small changes in Vpg.
This makes it possible to calculate Ic by assuming typical values of Vgg. Values in the range
from 0.6 to 0.7 V are commonly used. In addition, 8rq, and apq. are functions of Io and Vep.
Mid-level values are commonly assumed for the current gains. Typical values are $pq, = 100 and
apac = 1/1.01.
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Figure 6: (a) BJT dc bias circuit. (b) Circuit for Example 1.

Example 1 Figure 6(b) shows a BJT dc bias circuit. It is given that V* =15 V, Ry = 20 kS,
Ry =10 kQ, R3 = Ry =3 k2, Rs = Rg = 2 k. Solve for Ic1 and Ioo. Assume Vg = 0.7 V and
Bra. = 100 for each transistor.

Solution. For Q1, we have Vg1 = VT Ra/(R1 + R2), Rgp1 = Ri1||Re, Vgg1 = —IpaRy4 =
—IcaRy/Brac» VEEL = 0, and Rgp1 = R4. For Qa, we have Vpps = Ip1Ry = Ic1Ry/apqc,
Rpps = R4, VEgs =0, Rgpgo = Rg. Thus the bias equations are
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These equations can be solved simultaneously to obtain Io; = 1.41 mA and Ige = 1.74 mA.

Small-Signal Models

There are two small-signal circuit models which are commonly used to analyze BJT circuits. These
are the hybrid-m model and the T model. The two models are equivalent and give identical results.
They are described below.

Hybrid-m Model

Let each current and voltage be written as the sum of a dc component and a small-signal ac
component. The currents are given by Egs. (12) and (13). The voltages can be written

vBE = VBE + Vpe (22)



vep = VoB + Ve (23)
If the ac components are sufficiently small, i, can be written
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This equation defines the small-signal transconductance g, and the collector-emitter resistance rg.
From Egs. (8) and (10), it follows that 7o is given by
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To solve for g,,, we first solve for 01 /0VpE. Egs. (10) and (11) can be combined to write
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It follows from this equation that dI¢/0VpE is given by
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It is clear from Eq. (9) that ip is a function of vgg only. We wish to solve for the small-signal ac
base current given by i, = (0Ip/0VBE) vbe. This equation defines the small-signal ac base-emitter
resistance 7y = vy/ip = (0Ip/dVpE) . Although Eq. (9) can be used to solve for this, we use a
different approach. The small-signal ac collector current can be written
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The small-signal ac current gain (3 is defined as the ratio of i. to i, with vgg constant, i.e.
vee = 0. To solve for this, we can write for i,
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It follows from this that 3 is given by

gm/BFac

dm + 1/7’0 (33)
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Thus far, we have neglected the base spreading resistance r,. This is the ohmic resistance of the

base contact in the BJT. When it is included in the model, it appears in series with the base lead.

Because the base region is very narrow, the connection exhibits a resistance which often cannot

be neglected. Fig. 7(a) shows the hybrid-m small-signal model with r,, included. The currents are
given by

io = il + 22 (34)
To
7’/0 = gmVr = Bip (35)
. e
iy = o (36)

where 79, gm, 0, and r; are given above.

E
(a) (b)

Figure 7: (a) Hybrid-m model. (b) T model.

The equations derived above are based on the Gummel-Poon model of the BJT in the for-
ward active region. The equations are often approximated by assuming that the mid-level current
equations hold. In this case, Brqc, Bracs 705 9m, Tn, and (8 are given by
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The three approximations in these equations are commonly used for hand calculations.



T Model

The T model replaces the resistor r, in series with the base with a resistor r. in series with the
emitter. This resistor is called the emitter intrinsic resistance. To solve for r, we first solve for the
small-signal ac emitter-to-collector current gain . In Fig. 7, the current ¢/, can be written
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where the approximation is based on Egs. (40) and (41). It is often used for hand calculations.
The T model of the BJT is shown in Fig. 7(b). The currents in both the 7 and T models are
related by the equations

it = gmur = Bip = L, (47)

Small-Signal Equivalent Circuits

Several equivalent circuits are derived below which facilitate writing small-signal low-frequency
equations for the BJT. We assume that the circuits external to the device can be represented by
Thévenin equivalent circuits. The Norton equivalent circuit seen looking into the collector and the
Thévenin equivalent circuits seen looking into the base and the emitter are derived. Although the
T model is used for the derivation, identical results are obtained with the hybrid-m model. Several
examples are given which illustrate use of the equivalent circuits.

Simplified T Model

Figure 8 shows the T model with a Thévenin source in series with the base. We wish to solve for
an equivalent circuit in which the source i., connects from the collector node to ground rather than
from the collector node to the B’ node. The first step is to replace the source i, with two identical
series sources with the common node grounded. The circuit is shown in Fig. 9(a).

For the circuit in Fig. 9(a), we can write

i . . , (R +7
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Let us define the resistance ., by
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Figure 9: (a) Circuit with the i/, source replaced by identical series sources. (b) Simplified T model.

With this definition, v, is given by
Ve = Ugp — LT (50)

The circuit which models this equation is shown in Fig. 9(b). This will be called the simplified T
model. It predicts the same emitter and collector currents as the circuit in Fig. 8. Note that the
resistors Ry, and r,, do not appear in this circuit. They are part of the resistor ..

Norton Collector Circuit

The Norton equivalent circuit seen looking into the collector can be used to solve for the response
of the common-emitter and common-base stages. It consists of a parallel current source i.(s.) and
resistor ;. from the collector to signal ground. Fig. 10(a) shows the BJT with Thévenin sources
connected to its base and emitter. With the collector grounded, the collector current is the short-
circuit or Norton collector current. To solve for this, we use the simplified T model in Fig. 10(b).
We use superposition of vy and vte to solve for i.(s)-

With vge = 0, it follows from Fig. 10(b) that

. . Ry
. _ / S 1 e
le(se) = Qle +10 Ale — 1, ro + Rie
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Té—FRteHTO ( 7’0+Rte> ( )



Figure 10: (a) BJT with Thevenin sources connected to the base and the emitter. (b) Simplified

T model.

With vy, = 0, we have

/

. o ./ + . . To . Te
ZC(SC) = i, 0 = Oﬂero T Té le o T ’I“é
_ Vte arg+rl (52)
Rie +rl||ro ro+ 17
These equations can be combined to obtain
. Utbh Rie Ute arg + Té
i =———|a- — 53
) = T Ry ( o+ Rt) Foe + 72llr0 To 172 (53)
This equation is of the form
ic(sc) = GmbVib — GmeUte (54)
where
G = 1 <a _ Rte > _ (07 To — Rt@//B <55)
m Té + Rte”TQ ro + Rie Té + RteH?”O ro + Rie
1 + 7! e +7rl/a
Gme Rl < = o e/ (56)

- Rie +1l||ro 70 + 7L

7+ Riellro 7o + Rie

The next step is to solve for the resistance seen looking into the collector with vy, = ve = 0.
Figure 11(a) shows the simplified T model with a test source connected to the collector. The
resistance seen looking into the collector is given by 7;. = v;/i.. To solve for r;., we can write

le =

It follows that r;. is given by

Tic =

Ry

./ . . e .
at, +190 = —aig———— + 19
¢ T"e + Rie

Ut aRye
(1 - — a7
T()—I-T"eHRte < Té—i-Rte) ( )
E TO + TéHRte <58)

ic - 1-— Othe/ (Té + Rte)

The Norton equivalent circuit seen looking into the collector is shown in Fig. 11(b).
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Figure 11: (a) Circuit for calculating r;.. (b) Norton collector circuit.

For the case 19 > Ry and 7o >> r., we can write

Z'c(sc) =Gnm (Utb - Ute) (59)

where o
Gp=— 60
Té + Rte ( )

The value of i.(4;) calculated with this approximation is simply the value of ail,, where i, is cal-
culated with rg considered to be an open circuit. The term “rg approximations” is used in the
following when rg is neglected in calculating i.(s.) but not neglected in calculating 7;c.

Thévenin Emitter Circuit

The Thévenin equivalent circuit seen looking into the emitter is useful in calculating the response
of common-collector stages. It consists of a voltage source ve(,) in series with a resistor r;. from
the emitter node to signal ground. Fig. 12(a) shows the BJT symbol with a Thévenin source
connected to the base. The resistor R;. represents the external load resistance in series with the
collector. With the emitter open circuited, we denote the emitter voltage by v(o). The voltage
source in the Thévenin emitter circuit has this value. To solve for it, we use the simplified T model
in Fig. 12(b).

Ry 1y

tb
= ve(oc)

(a)

Figure 12: (a) BJT with Thévenin source connected to the base. (b) Simplified T model circuit for
calculating ve(oc)-
The current i, can be solved for by superposition of the sources vy, and «il. It is given by

. Utb . Ry
z; == + az’e ; .
L4+ 10 + Ric re + 70 + Ric

(61)
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This can be solved for i/, to obtain

i/e == Vtb == Uth <62)
r+ro+(l—a)Re 1. +710+ Rie/ (14 5)
The open-circuit emitter voltage is given by
R/ (1
Ve(oc) = Utb — iéré = ot tC/ ( i ﬁ) (63)

B 1o+ Rie/ (1 + )

We next solve for the resistance seen looking into the emitter node. It can be solved for as the
ratio of the open-circuit emitter voltage ve(,) to the short-circuit emitter current. The circuit for
calculating the short-circuit current is shown in Fig. 13(a). By superposition of i, and «il,, we can
write

; o Ry :i,ro+(1—oz)th
e(sc) € °ro + Rie € ro + Ric
g o+ R/ (14 0) 64
N 7’_, ro + Ry ( )
e C
The resistance seen looking into the emitter is given by
v R
rie = 29 _ 1/ ro * Thie (65)

ie(sc) N Te?“é + 7o+ th/ (1 + ﬁ)

The Thévenin equivalent circuit seen looking into the emitter is shown in Fig. 13(b).

Figure 13: (a) Circuit for calculating 7). (b) Thévenin emitter circuit.

Thévenin Base Circuit

Although the base is not an output terminal, the Thévenin equivalent circuit seen looking into the
base is useful in calculating the base current. It consists of a voltage source vy, in series with a
resistor 73 from the base node to signal ground. Fig. 14(a) shows the BJT symbol with a Thévenin
source connected to its emitter. Fig. 14(b) shows the T model for calculating the open-circuit base
voltage. Because i, = 0, it follows that i, = 0. Thus there is no drop across r, and 7, so that Up(oc)
is given by
ro + Ric

Rie + 1o + Rye

The next step is to solve for the resistance seen looking into the base. It can be calculated
by setting v, = 0 and connecting a test current source i; to the base. It is given by 7 = wvp/is.
Fig. 15(a) shows the T circuit for calculating vy, where the current source [(i; has been divided

(66)

Ub(oc) = Ve = Ute
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Ub(oc)

Figure 14: (a) BJT with Thevenin source connected to the emitter. (b) T model for calculating

Ub(oc)-

into identical series sources with their common node grounded to simplify use of superposition. By
superposition of 7; and the two Ji; sources, we can write

. . . . RicRee
vy = Ty + (i + Bit) [Pz + e + Riell (1o + Ric)] — ﬂzth—t (67)
te T 70
This can be solved for 7;; to obtain
Up ﬂthRte
T'ib it Tz + (14 8) [re + Riell (ro + Ric)] Ry + 70 + Rye (68)
The Thévenin base circuit is shown in Fig. 15(b).
Uy Ty Bi, L1, i, Ry, ;
O Yo ”
i
t
Tip
Ub(oc)
= (o) (b)

Figure 15: (a) Circuit for calculating vp. (b) Thévenin base circuit.

Summary of Models

Figure 16 summarizes the four equivalent circuits derived above.

Example Amplifier Circuits

This section describes several examples which illustrate the use of the small-signal equivalent circuits
derived above to write by inspection the voltage gain, the input resistance, and the output resistance
of both single-stage and two-stage amplifiers.
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Figure 16: Summary of the small-signal equivalent circuits.

The Common-Emitter Amplifier

Figure 17(a) shows the ac signal circuit of a common-emitter amplifier. We assume that the bias
solution and the small-signal resistances 7, and r¢ are known. The output voltage and output
resistance can be calculated by replacing the circuit seen looking into the collector by the Norton
equivalent circuit of Fig. 11(b). With the aid of this circuit, we can write

Vo = —le(se) (Ticl | Rte) = —Gmp (Ticl| Rec) v (69)

Tout = TicHth (70)

where G, and 7, respectively, are given by Egs. (55) and (58). The input resistance is given by
Tin = Rip + Tip (71)

where 73 is given by Eq. (68).

Figure 17: (a) Common-emitter amplifier. (b) Common-collector amplifier. (¢) Common-base
amplifier.
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The Common-Collector Amplifier

Figure 17(b) shows the ac signal circuit of a common-collector amplifier. We assume that the bias
solution and the small-signal resistances 7, and ro are known. The output voltage and output
resistance can be calculated by replacing the circuit seen looking into the emitter by the Thévenin
equivalent circuit of Fig. 13(b). With the aid of this circuit, we can write

v — Rye _ ro + th/ (1 + ﬂ) Rie v (72)
? e(oe) Tie + Rte 71:3 + To + th/ (1 + /6) Tie + Rte tb
Tout = TieHRte (73)
where r;e is given by Eq. (65). The input resistance is given by
Tin = Ry + 1ip (74)

where 7, is given by Eq. (68).

The Common-Base Amplifier

Figure 17(c) shows the ac signal circuit of a common-base amplifier. We assume that the bias
solution and the small-signal parameters r, and ry are known. The output voltage and output
resistance can be calculated by replacing the circuit seen looking into the collector by the Norton
equivalent circuit of Fig. 11(b). The input resistance can be calculated by replacing the circuit
seen looking into the emitter by the Thévenin equivalent circuit of Fig. 13 with ve(,e) = 0. With
the aid of these circuits, we can write

Vo = ~ie(sc) (Ticll Ric) = Gme (Ticl| Ric) vie (75)
Tout = TicHth (76)
Tin = Rie + Tie (77)

where Gpe, ric, and r;e, respectively, are given by Egs. (56), (58), and (65).

The CE/CC Amplifier

Figure 18(a) shows the ac signal circuit of a two-stage amplifier consisting of a CE stage followed
by a CC stage. Such a circuit is used to obtain a high voltage gain and a low output resistance.
The voltage gain can be written

Vo lel(so) o w2 Ve2(oq) |, Vo
Vb1 Vb1 Lel(sce) Vb2 Ve2(oc)
o Riea
= G [ (| Ren)] e (78)
where 77, is calculated with Ry = 7ic1]|Re1. The input and output resistances are given by
Tin = Rip1 + Tip1 (79)
Tout = Tie2|| Rte2 (80)

Although not a part of the solution, the resistance seen looking out of the collector of @7 is
Ric1 = Rot||rive-
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Figure 18: (a) CE-CC amplifier. (b) Cascode amplifier.

The Cascode Amplifier

Figure 18(b) shows the ac signal circuit of a cascode amplifier. The voltage gain can be written

Vo icl(sc) Ute2 Z‘02(30) Vo
X = X X =
Vtb1 Vb1 Lel(sce) Ute2 Le2(se)

= Gmi (—Tic1) (—Gme2) (—Tic2|| Rec2)

where Gmeo and i are calculated with Ries = 7i.1. The input and output resistances are given
by
Tin = Rp1 + Tip

Tout = th2 ||Ti02

The resistance seen looking out of the collector of Q)1 is Rie1 = Tiea-
A second cascode amplifier is shown in Fig. 19(a) where a pnp transistor is used for the second
stage. The voltage gain is given by

v icl sc Vte2 icQ sc (Y
o _ lao Ve | e v
Vtp1 Utb1 Lel(sce) Ute2 Le2(sc)

= Gmi (—Tic1||Rc1) (—Gme2) (—Tic2|| Rec2)

The expressions for ri, and roy are the same as for the cascode amplifier in Fig. 18(b). The
resistance seen looking out of the collector of Q1 is Ric1 = Rot||7ie2-

The Differential Amplifier

Figure 19(b) shows the ac signal circuit of a differential amplifier. For the case of an active tail bias
supply, the resistor R represents its small-signal ac resistance. We assume that the transistors
are identical, biased at the same currents and voltages, and have identical small-signal parameters.
Looking out of the emitter of @1, the Thévenin voltage and resistance are given by

(% = v —RQ
tel - eQ(oc) RQ + RE + 'rie
+ Ree/ (1+ R
O /(1+0) Q (81)

4710+ Ric/ (1+ B) Rg + RE + Tie
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(a)

Figure 19: (a) Second cascode amplifier. (b) Differential amplifier.

Rie1 = R + RQH (RE + T'ie) (82)

The small-signal collector voltage of Q1 is given by

Vo1 = _icl(sc) (ricHRtC) = - (Gmbvtbl - Gmevtel) (TicHth)
= _Gmb (TicHth) Vtbl
e/ (1
LG ro + Ric/ (1 + 5) Rg (83)

v
M r0+ Rie) 1+ B) Tie + Rz + Rg °

By symmetry, v,2 is obtained by interchanging the subscripts 1 and 2 in this equation. The small-
signal resistance seen looking into either output is

Tout = thHTic (84)

where 7. calculated from Eq. (58) with Ry = Rg + Rg|| (RE + rie). Although not labeled on the
circuit, the input resistance seen by both vy and vy is iy = 7.

A second solution of the diff amp can be obtained by replacing vy, and vy with differential
and common-mode components as follows:

Vi(d
Vth1 = Vi(em) + %) (85)
Vi(d
V2 = Viem) — o (86)
where v(q) = vip1 — V2 and Viem) = (Vi1 + V) /2. Superposition of v;4) and vj(cy) can be used to
solve for vo1 and ve. With vj(em) = 0, the effects of vy = vi(d)/2 and vy = —vi(d)/Z are to cause

vg = 0. Thus the v, node can be grounded and the circuit can be divided into two common-emitter
stages in which Ry.q) = Rp for each transistor. In this case, v,1(g) can be written

lel(se)  Vol(d) Vi(d)
U, = —— X - v = Gouad) (—Ticta) || Rte
@) = G T @ (@) (=Tica) [ Ree) =
( — U
= Gua) (~Tic(a)l| Rec) % (87)

By symmetry voa(q) = —Vo1(q)-
With v;q) = 0, the effects of v = va = vj(cm) are to cause the emitter currents in ()1 and
@2 to change by the same amounts. If Rg is replaced by two parallel resistors of value 2Rg, it
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follows by symmetry that the circuit can be separated into two common-emitter stages each with
Rie(em) = RE + 2Rq. In this case, vy1(em) can be written

lel (sc) % Uol(cm)

Uthl(cm) = Gm(cm) (_Tic(cm) HRtC) Ui(em)

Uol(em) =
Hem) Utb1(cm) Lel(sc)

Vtp1 + U
= Gm(cm) (_ric(cm)HRtC) % (88)

By symmetry Vo2(ecm) = Vol(cm)-

Because Ry is different for the differential and common-mode circuits, G,,, 75, and 7;, are
different. However, the total solution vo1 = v,1(4) + Vo1(em) 1S the same as that given by Eq. (83),
and similarly for vs2. The small-signal base currents can be written iy1 = Vj(em)/Tit(em) + Vi(d)/Tiv(d)
and ip2 = Vj(cm) / Tib(em) — Vi(d) / Tip(d)- If Rg — oo, the common-mode solutions are zero. In this case,
the differential solutions can be used for the total solutions. If Rg > Rg + rje, the common-mode
solutions are often approximated by zero.

Small-Signal High-Frequency Models

Figure 20 shows the hybrid-m and T models for the BJT with the base-emitter capacitance ¢, and
the base-collector capacitance ¢, added. The capacitor c. is the collector-substrate capacitance
which in present in monolithic integrated-circuit devices but is omitted in discrete devices. These
capacitors model charge storage in the device which affects its high-frequency performance. The
capacitors are given by

Trlc
Cr = Cje t+ Vi (89)
Cjc
cy = — 90
L+ Ves/ o™ (90)
Cop = Cies (91)

1+ Ves/oc)™

where I¢ is the dc collector current, Vop is the dc collector-base voltage, Viog is the dc collector-
substrate voltage, cje is the zero-bias junction capacitance of the base-emitter junction, 7p is
the forward transit time of the base-emitter junction, c¢j. is the zero-bias junction capacitance of
the base-collector junction, cjes is the zero-bias collector-substrate capacitance, ¢ is the built-in
potential, and m. is the junction exponential factor. For integrated circuit lateral pnp transistors,
Cces 18 replaced with a capacitor ¢ps from base to substrate, i.e. from the B node to ground.

C
I
]|
i .3 11
b T Ea@b 'LC
B =AM\ + C
-9
c___T v, 1 l
T 7 s ™ [
- gro Cos
i I
le
le
E
(@)

Figure 20: High-frequency small-signal models of the BJT. (a) Hybrid-m model. (b) T model.
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In these models, the currents are related by

./ ./ ./
le = gmVUr = Bl = oy,

These relations are the same as those in Eq. (47) with ¢, replaced with 4.

19

(92)



