
The BJT

BJT Device Equations

Figure 1 shows the circuit symbols for the npn and pnp BJTs. In the active mode, the collector-base
junction is reverse biased and the base-emitter junction is forward biased. Because of recombina-
tions of the minority and majority carriers, the equations for the currents can be divided into three
regions: low, mid, and high. For the npn device, the currents are given by
Low Level:
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where all leakage currents that are a function of vCB have been neglected. In the current equations,
IS is the saturation current and βF is the mid-level base-to-collector current gain. These are
functions of the collector-base voltage and are given by

IS = ISO

µ
1 +

vCB
VA

¶
= ISO

µ
1 +

vCE − vBE
VA

¶
(7)

βF = βFO

µ
1 +

vCB
VA

¶
= βFO

µ
1 +

vCE − vBE
VA

¶
(8)

Figure 1: BJT circuit symbols.

In the equations for iB and iC , VA is the Early voltage and ISO and βFO, respectively, are the
zero bias values of IS and βF . The constant n is the emission coefficient or ideality factor of the
base-emitter junction. It accounts for recombinations of holes and electrons in the base-emitter
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junction at low levels. Its value, typically in the range 1 ≤ n ≤ 4, is determined by the slope of
the plot of ln (iC) versus vBE at low levels. The default value in SPICE is n = 1.5. The constant
ISE is determined by the value of iB where transition from the low-level to the mid-level region
occurs. The constant IK is determined by the value of iC where transition from the mid-level to
the high-level region occurs. Note that IS/βF = IS0/βF0 so that iB is not a function of vCB in the
mid-level region. The equations apply to the pnp device if the subscripts BE and CB are reversed.

Figure 2 shows a typical plot of iC versus vBE for vCE constant. The plot is called the transfer
characteristics. There is a threshold voltage above which the current appears to increase rapidly.
This voltage is typically 0.5 to 0.6 V. In the forward active region, the base-to-emitter voltage is
typically 0.6 to 0.7 V. Figure 3 shows typical plots of iC versus vCE for iB constant. The plots are
called the output characteristics. Note that the slope approaches a constant as vCE is increased. If
the straight line portions of the curves are extended back so that they intersect the vCE axis, they
would intersect at the voltage vCE = −VA + vBE ' −VA. For vCE small, vBE > vCE and the BJT
is in the saturation region.

Figure 2: Typical plot of iC versus vBE for vCE constant.

Figure 3: Plots of iC versus vCE for iB constant.

In the Gummel-Poon model of the BJT, the current equations are combined to write the general
equations for iB and iC as follows:

iB = ISE

·
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µ
vBE
nVT
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¸
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¸

(9)
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iC =
IS
Kq

·
exp

µ
vBE
VT

¶
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¸

(10)

where Kq is given by

Kq =
1

2
+

s
1

4
+
IS
IK

·
exp
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vBE
VT

¶
− 1
¸
= 1 +

iC
IK

(11)

Fig. 4 illustrates typical plots of ln (iC) and ln (iB) versus vBE, where it is assumed that vCB
is held constant. At low levels, the iC curve exhibits a slope m = 1 while the iB curve exhibits a
slope m = 1/n, where the value n = 1.5 has been used. At mid levels, both curves exhibit a slope
m = 1. At high levels, the iC curve exhibits a slope m = 1/2 while the iB curve exhibits a slope
m = 1. It follows that the ratio of iC to iB is approximately constant at mid levels and decreases
at low and high levels.

Figure 4: Example plots of ln (iC) and ln (iB) versus vBE.

Current Gains

Let the collector and base currents be written as the sum of a dc component and a small-signal ac
component as follows:

iC = IC + ic (12)

iB = IB + ib (13)

The dc current gain βFdc is defined as the ratio of IC to IB. It is straightforward to show that it
is given by

βFdc =
βF

1 +
IC
IK

+
βF ISE
IC

"µ
1 +

IC
IS
+

I2C
ISIK

¶1/n
− 1
# (14)

Because βF and IS are functions of the collector-base voltage VCB, it follows that βFdc is a
function of both IC and VCB. If vCB is held constant so that the change in iC is due to a change
in vBE, the small-signal change in base current can be written

ib =
∂IB
∂IC

ic =

·
∂

∂IC

µ
IC
βFdc

¶¸
ic =

ic
βFac

(15)
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where βFac is the small-signal ac current gain given by

βFac =

·
∂

∂IC

µ
IC
βFdc

¶¸−1
=

βFµ
1 +

2IC
IK

¶"
1 +

βF ISE
nIS

µ
1 +

IC
IS
+

I2C
ISIK

¶ 1
n
−1# (16)

Note that βFac is defined for a constant vCB. In the small-signal models, it is common to define
the small-signal ac current gain with vCE constant, i.e. vce = 0. This is defined in the next section,
where the symbol β is used.

Typical plots of the two current gains as a function of IC are shown in Fig. 5 where log scales
are used. At low levels, the gains decrease with decreasing IC because the base current decreases
at a slower rate than the collector current. At high levels, the gains decrease with increasing IC
because the collector current increases at a slower rate than the base current. At mid levels, both
gains are approximately constant and have the same value. In the figure, the mid-level range is
approximately two decades wide.

Figure 5: Log-log plots of βFdc and βFac as functions of IC .

The emitter-collector dc current gain αFdc is defined as the ratio of the dc collector current IC
to the dc emitter current IE . To solve for this, we can write

IE = IB + IC =

µ
1

βFdc
+ 1

¶
IC =

1 + βFdc
βFdc

IC (17)

It follows that

αFdc =
IC
IE
=

βFdc
1 + βFdc

(18)

Thus the dc currents are related by the equations

IC = βFdcIB = αFdcIE (19)

Bias Equation

Figure 6(a) shows the BJT with the external circuits represented by Thévenin dc circuits. If the
BJT is biased in the active region, we can write

VBB − VEE = IBRBB + VBE + IEREE

=
IC
βFdc

RBB + VBE +
IC
αFdc

REE (20)
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This equation can be solved for IC to obtain

IC =
VBB − VEE − VBE

RBB/βFdc +REE/αFdc
(21)

It can be seen from Fig. 2 that large changes in IC are associated with small changes in VBE .
This makes it possible to calculate IC by assuming typical values of VBE. Values in the range
from 0.6 to 0.7 V are commonly used. In addition, βFdc and αFdc are functions of IC and VCB.
Mid-level values are commonly assumed for the current gains. Typical values are βFdc = 100 and
αFdc = 1/1.01.

Figure 6: (a) BJT dc bias circuit. (b) Circuit for Example 1.

Example 1 Figure 6(b) shows a BJT dc bias circuit. It is given that V + = 15 V, R1 = 20 kΩ,
R2 = 10 kΩ, R3 = R4 = 3 kΩ, R5 = R6 = 2 kΩ. Solve for IC1 and IC2. Assume VBE = 0.7 V and
βFdc = 100 for each transistor.

Solution. For Q1, we have VBB1 = V +R2/ (R1 +R2), RBB1 = R1kR2, VEE1 = −IB2R4 =
−IC2R4/βFdc, VEE1 = 0, and REE1 = R4. For Q2, we have VBB2 = IE1R4 = IC1R4/αFdc,
RBB2 = R4, VEE2 = 0, REE2 = R6. Thus the bias equations are

V +
R2

R1 +R2
+
IC2
βFdc

R4 = VBE +
IC1
βFdc

R1kR2 + IC1
αFdc

R4

IC1
αFdc

R4 = VBE +
IC2
βFdc

R4 +
IC2
αFdc

R6

These equations can be solved simultaneously to obtain IC1 = 1.41 mA and IC2 = 1.74 mA.

Small-Signal Models

There are two small-signal circuit models which are commonly used to analyze BJT circuits. These
are the hybrid-π model and the T model. The two models are equivalent and give identical results.
They are described below.

Hybrid-π Model

Let each current and voltage be written as the sum of a dc component and a small-signal ac
component. The currents are given by Eqs. (12) and (13). The voltages can be written

vBE = VBE + vbe (22)
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vCB = VCB + vcb (23)

If the ac components are sufficiently small, ic can be written

ic =
∂IC
∂VBE

vbe +
∂IC
∂VCB

vcb =
∂IC
∂VBE

vbe +
∂IC
∂VCB

(vce − vbe)

=

µ
∂IC
∂VBE

− ∂IC
∂VCB

¶
vbe +

∂IC
∂VCB

vce = gmvbe +
vce
r0

(24)

This equation defines the small-signal transconductance gm and the collector-emitter resistance r0.
From Eqs. (8) and (10), it follows that r0 is given by

r0 =

µ
∂IC
∂VCB

¶−1
=

½
KqISO
VA

[exp (vBE/VT )− 1]
¾−1

=
VA + VCB

IC
(25)

To solve for gm, we first solve for ∂IC/∂VBE. Eqs. (10) and (11) can be combined to write

IC +
I2C
IK

= IS

·
exp

µ
VBE
VT

¶
− 1
¸

(26)

It follows from this equation that ∂IC/∂VBE is given by

∂IC
∂VBE

=
IS exp (VBE/VT )

VT (1 + 2IC/IK)
=
IC (1 + IC/IK) + IS
VT (1 + 2IC/IK)

(27)

The transconductance is given by

gm =
∂IC
∂VBE

− ∂IC
∂VCB

=
IC (1 + IC/IK) + IS
VT (1 + 2IC/IK)

− 1

r0
(28)

It is clear from Eq. (9) that iB is a function of vBE only. We wish to solve for the small-signal ac
base current given by ib = (∂IB/∂VBE) vbe. This equation defines the small-signal ac base-emitter
resistance rπ = vb/ib = (∂IB/∂VBE)

−1. Although Eq. (9) can be used to solve for this, we use a
different approach. The small-signal ac collector current can be written

ic = gmvbe +
vce
r0
=

µ
gm +

1

r0

¶
vbe +

vcb
r0
= βFacib +

vcb
r0

(29)

It follows from this equation that µ
gm +

1

r0

¶
vbe = βFacib (30)

Thus rπ is given by

rπ =
vbe
ib
=

βFac
gm + 1/r0

(31)

The small-signal ac current gain β is defined as the ratio of ic to ib with vCE constant, i.e.
vce = 0. To solve for this, we can write for ic

ic = gmvbe +
vce
r0
= gmibrπ +

vce
r0
= βib +

vce
r0

(32)
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It follows from this that β is given by

β = gmrπ =
gmβFac
gm + 1/r0

(33)

Thus far, we have neglected the base spreading resistance rx. This is the ohmic resistance of the
base contact in the BJT. When it is included in the model, it appears in series with the base lead.
Because the base region is very narrow, the connection exhibits a resistance which often cannot
be neglected. Fig. 7(a) shows the hybrid-π small-signal model with rx included. The currents are
given by

ic = i
0
c +

vce
r0

(34)

i0c = gmvπ = βib (35)

ib =
vbe
rπ

(36)

where r0, gm, β, and rπ are given above.

Figure 7: (a) Hybrid-π model. (b) T model.

The equations derived above are based on the Gummel-Poon model of the BJT in the for-
ward active region. The equations are often approximated by assuming that the mid-level current
equations hold. In this case, βFdc, βFac, r0, gm, rπ, and β are given by

βFdc = βFac = βF (37)

r0 =
VCB + VA

IC
(38)

gm =
IC + IS
VT

− 1

r0
' IC
VT

(39)

rπ =
βFac

gm + 1/r0
' VT
IB

(40)

β = gmrπ ' IC
IB
= βFdc (41)

The three approximations in these equations are commonly used for hand calculations.
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T Model

The T model replaces the resistor rπ in series with the base with a resistor re in series with the
emitter. This resistor is called the emitter intrinsic resistance. To solve for re, we first solve for the
small-signal ac emitter-to-collector current gain α. In Fig. 7, the current i0e can be written

i0e = ib + i
0
c =

µ
1

β
+ 1

¶
i0c =

1 + β

β
i0c =

i0c
α

(42)

where α is given by

α =
i0c
i0e
=

β

1 + β
(43)

Thus the current i0c can be written
i0c = αi0e (44)

The voltage vπ can be related to i0e as follows:

vπ = ibrπ =
i0c
β
rπ =

αi0e
β
rπ = i

0
e

rπ
1 + β

(45)

It follows that the intrinsic emitter resistance is given by

re =
vπ
i0e
=

rπ
1 + β

' VT
(1 + βFdc) IB

=
VT
IE

(46)

where the approximation is based on Eqs. (40) and (41). It is often used for hand calculations.
The T model of the BJT is shown in Fig. 7(b). The currents in both the π and T models are
related by the equations

i0c = gmvπ = βib = αi0e (47)

Small-Signal Equivalent Circuits

Several equivalent circuits are derived below which facilitate writing small-signal low-frequency
equations for the BJT. We assume that the circuits external to the device can be represented by
Thévenin equivalent circuits. The Norton equivalent circuit seen looking into the collector and the
Thévenin equivalent circuits seen looking into the base and the emitter are derived. Although the
T model is used for the derivation, identical results are obtained with the hybrid-π model. Several
examples are given which illustrate use of the equivalent circuits.

Simplified T Model

Figure 8 shows the T model with a Thévenin source in series with the base. We wish to solve for
an equivalent circuit in which the source i0c connects from the collector node to ground rather than
from the collector node to the B0 node. The first step is to replace the source i0c with two identical
series sources with the common node grounded. The circuit is shown in Fig. 9(a).

For the circuit in Fig. 9(a), we can write

ve = vtb − i0e
1 + β

(Rtb + rx)− i0ere = v̇tb − i0e
µ
Rtb + rx
1 + β

+ re

¶
(48)

Let us define the resistance r0e by

r0e =
Rtb + rx
1 + β

+ re =
Rtb + rx + rπ

1 + β
(49)
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Figure 8: T model with Thévenin source connected to the base.

Figure 9: (a) Circuit with the i0c source replaced by identical series sources. (b) Simplified T model.

With this definition, ve is given by
ve = vtb − i0er0e (50)

The circuit which models this equation is shown in Fig. 9(b). This will be called the simplified T
model. It predicts the same emitter and collector currents as the circuit in Fig. 8. Note that the
resistors Rtb and rx do not appear in this circuit. They are part of the resistor r0e.

Norton Collector Circuit

The Norton equivalent circuit seen looking into the collector can be used to solve for the response
of the common-emitter and common-base stages. It consists of a parallel current source ic(sc) and
resistor ric from the collector to signal ground. Fig. 10(a) shows the BJT with Thévenin sources
connected to its base and emitter. With the collector grounded, the collector current is the short-
circuit or Norton collector current. To solve for this, we use the simplified T model in Fig. 10(b).
We use superposition of vtb and vte to solve for ic(sc).

With vte = 0, it follows from Fig. 10(b) that

ic(sc) = αi0e + i0 = αi0e − i0e
Rte

r0 +Rte

=
vtb

r0e +Rtekr0

µ
α− Rte

r0 +Rte

¶
(51)
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Figure 10: (a) BJT with Thevenin sources connected to the base and the emitter. (b) Simplified
T model.

With vtb = 0, we have

ic(sc) = αi0e + i0 = αie
r0

r0 + r0e
+ ie

r0e
r0 + r0e

= − vte
Rte + r0ekr0

αr0 + r
0
e

r0 + r0e
(52)

These equations can be combined to obtain

ic(sc) =
vtb

r0e +Rtekr0

µ
α− Rte

r0 +Rte

¶
− vte
Rte + r0ekr0

αr0 + r
0
e

r0 + r0e
(53)

This equation is of the form
ic(sc) = Gmbvtb −Gmevte (54)

where

Gmb =
1

r0e +Rtekr0

µ
α− Rte

r0 +Rte

¶
=

α

r0e +Rtekr0
r0 −Rte/β
r0 +Rte

(55)

Gme =
1

Rte + r0ekr0
αr0 + r

0
e

r0 + r0e
=

α

r0e +Rtekr0
r0 + r

0
e/α

r0 +Rte
(56)

The next step is to solve for the resistance seen looking into the collector with vtb = vte = 0.
Figure 11(a) shows the simplified T model with a test source connected to the collector. The
resistance seen looking into the collector is given by ric = vt/ic. To solve for ric, we can write

ic = αi0e + i0 = −αi0
Rte

r0e +Rte
+ i0

=
vt

r0 + r0ekRte

µ
1− αRte

r0e +Rte

¶
(57)

It follows that ric is given by

ric =
vt
ic
=

r0 + r
0
ekRte

1− αRte/ (r0e +Rte)
(58)

The Norton equivalent circuit seen looking into the collector is shown in Fig. 11(b).
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Figure 11: (a) Circuit for calculating ric. (b) Norton collector circuit.

For the case r0 À Rte and r0 À r0e, we can write

ic(sc) = Gm (vtb − vte) (59)

where
Gm =

α

r0e +Rte
(60)

The value of ic(sc) calculated with this approximation is simply the value of αi0e, where i0e is cal-
culated with r0 considered to be an open circuit. The term “r0 approximations” is used in the
following when r0 is neglected in calculating ic(sc) but not neglected in calculating ric.

Thévenin Emitter Circuit

The Thévenin equivalent circuit seen looking into the emitter is useful in calculating the response
of common-collector stages. It consists of a voltage source ve(oc) in series with a resistor rie from
the emitter node to signal ground. Fig. 12(a) shows the BJT symbol with a Thévenin source
connected to the base. The resistor Rtc represents the external load resistance in series with the
collector. With the emitter open circuited, we denote the emitter voltage by ve(oc). The voltage
source in the Thévenin emitter circuit has this value. To solve for it, we use the simplified T model
in Fig. 12(b).

Figure 12: (a) BJT with Thévenin source connected to the base. (b) Simplified T model circuit for
calculating ve(oc).

The current i0e can be solved for by superposition of the sources vtb and αi0e. It is given by

i0e =
vtb

r0e + r0 +Rtc
+ αi0e

Rtc
r0e + r0 +Rtc

(61)
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This can be solved for i0e to obtain

i0e =
vtb

r0e + r0 + (1− α)Rtc
=

vtb
r0e + r0 +Rtc/ (1 + β)

(62)

The open-circuit emitter voltage is given by

ve(oc) = vtb − i0er0e = vtb
r0 +Rtc/ (1 + β)

r0e + r0 +Rtc/ (1 + β)
(63)

We next solve for the resistance seen looking into the emitter node. It can be solved for as the
ratio of the open-circuit emitter voltage ve(oc) to the short-circuit emitter current. The circuit for
calculating the short-circuit current is shown in Fig. 13(a). By superposition of i0e and αi0e, we can
write

ie(sc) = i0e − αi0e
Rtc

r0 +Rtc
= i0e

r0 + (1− α)Rtc
r0 +Rtc

=
vtb
r0e

r0 +Rtc/ (1 + β)

r0 +Rtc
(64)

The resistance seen looking into the emitter is given by

rie =
ve(oc)
ie(sc)

= r0e
r0 +Rtc

r0e + r0 +Rtc/ (1 + β)
(65)

The Thévenin equivalent circuit seen looking into the emitter is shown in Fig. 13(b).

Figure 13: (a) Circuit for calculating ie(sc). (b) Thévenin emitter circuit.

Thévenin Base Circuit

Although the base is not an output terminal, the Thévenin equivalent circuit seen looking into the
base is useful in calculating the base current. It consists of a voltage source vb(oc) in series with a
resistor rib from the base node to signal ground. Fig. 14(a) shows the BJT symbol with a Thévenin
source connected to its emitter. Fig. 14(b) shows the T model for calculating the open-circuit base
voltage. Because ib = 0, it follows that i0e = 0. Thus there is no drop across rx and re so that vb(oc)
is given by

vb(oc) = ve = vte
r0 +Rtc

Rte + r0 +Rtc
(66)

The next step is to solve for the resistance seen looking into the base. It can be calculated
by setting vte = 0 and connecting a test current source it to the base. It is given by rib = vb/it.
Fig. 15(a) shows the T circuit for calculating vb, where the current source βit has been divided
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Figure 14: (a) BJT with Thevenin source connected to the emitter. (b) T model for calculating
vb(oc).

into identical series sources with their common node grounded to simplify use of superposition. By
superposition of it and the two βit sources, we can write

vb = itrx + (it + βit) [rx + re +Rtek (r0 +Rtc)]− βit
RtcRte
Rtc + r0

(67)

This can be solved for rib to obtain

rib =
vb
it
= rx + (1 + β) [re +Rtek (r0 +Rtc)]− βRtcRte

Rtc + r0 +Rte
(68)

The Thévenin base circuit is shown in Fig. 15(b).

Figure 15: (a) Circuit for calculating vb. (b) Thévenin base circuit.

Summary of Models

Figure 16 summarizes the four equivalent circuits derived above.

Example Amplifier Circuits

This section describes several examples which illustrate the use of the small-signal equivalent circuits
derived above to write by inspection the voltage gain, the input resistance, and the output resistance
of both single-stage and two-stage amplifiers.
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Figure 16: Summary of the small-signal equivalent circuits.

The Common-Emitter Amplifier

Figure 17(a) shows the ac signal circuit of a common-emitter amplifier. We assume that the bias
solution and the small-signal resistances r0e and r0 are known. The output voltage and output
resistance can be calculated by replacing the circuit seen looking into the collector by the Norton
equivalent circuit of Fig. 11(b). With the aid of this circuit, we can write

vo = −ic(sc) (rickRtc) = −Gmb (rickRtc) vtb (69)

rout = rickRtc (70)

where Gmb and ric, respectively, are given by Eqs. (55) and (58). The input resistance is given by

rin = Rtb + rib (71)

where rib is given by Eq. (68).

Figure 17: (a) Common-emitter amplifier. (b) Common-collector amplifier. (c) Common-base
amplifier.
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The Common-Collector Amplifier

Figure 17(b) shows the ac signal circuit of a common-collector amplifier. We assume that the bias
solution and the small-signal resistances r0e and r0 are known. The output voltage and output
resistance can be calculated by replacing the circuit seen looking into the emitter by the Thévenin
equivalent circuit of Fig. 13(b). With the aid of this circuit, we can write

vo = ve(oc)
Rte

rie +Rte
=

r0 +Rtc/ (1 + β)

r0e + r0 +Rtc/ (1 + β)

Rte
rie +Rte

vtb (72)

rout = riekRte (73)

where rie is given by Eq. (65). The input resistance is given by

rin = Rtb + rib (74)

where rib is given by Eq. (68).

The Common-Base Amplifier

Figure 17(c) shows the ac signal circuit of a common-base amplifier. We assume that the bias
solution and the small-signal parameters r0e and r0 are known. The output voltage and output
resistance can be calculated by replacing the circuit seen looking into the collector by the Norton
equivalent circuit of Fig. 11(b). The input resistance can be calculated by replacing the circuit
seen looking into the emitter by the Thévenin equivalent circuit of Fig. 13 with ve(oc) = 0. With
the aid of these circuits, we can write

vo = −ic(sc) (rickRtc) = Gme (rickRtc) vte (75)

rout = rickRtc (76)

rin = Rte + rie (77)

where Gme, ric, and rie, respectively, are given by Eqs. (56), (58), and (65).

The CE/CC Amplifier

Figure 18(a) shows the ac signal circuit of a two-stage amplifier consisting of a CE stage followed
by a CC stage. Such a circuit is used to obtain a high voltage gain and a low output resistance.
The voltage gain can be written

vo
vtb1

=
ic1(sc)

vtb1
× vtb2
ic1(sc)

× ve2(oc)
vtb2

× vo
ve2(oc)

= Gmb1 [− (ric1kRC1)] r0
r0e2 + r0

Rte2
rie2 +Rte2

(78)

where r0e2 is calculated with Rtb2 = ric1kRC1. The input and output resistances are given by

rin = Rtb1 + rib1 (79)

rout = rie2kRte2 (80)

Although not a part of the solution, the resistance seen looking out of the collector of Q1 is
Rtc1 = RC1krib2.
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Figure 18: (a) CE-CC amplifier. (b) Cascode amplifier.

The Cascode Amplifier

Figure 18(b) shows the ac signal circuit of a cascode amplifier. The voltage gain can be written

vo
vtb1

=
ic1(sc)

vtb1
× vte2
ic1(sc)

× ic2(sc)
vte2

× vo
ic2(sc)

= Gm1 (−ric1) (−Gme2) (−ric2kRtc2)

where Gme2 and ric2 are calculated with Rte2 = ric1. The input and output resistances are given
by

rin = Rtb1 + rib1

rout = Rtc2kric2
The resistance seen looking out of the collector of Q1 is Rtc1 = rie2.

A second cascode amplifier is shown in Fig. 19(a) where a pnp transistor is used for the second
stage. The voltage gain is given by

vo
vtb1

=
ic1(sc)

vtb1
× vte2
ic1(sc)

× ic2(sc)
vte2

× vo
ic2(sc)

= Gm1 (−ric1kRC1) (−Gme2) (−ric2kRtc2)

The expressions for rin and rout are the same as for the cascode amplifier in Fig. 18(b). The
resistance seen looking out of the collector of Q1 is Rtc1 = RC1krie2.

The Differential Amplifier

Figure 19(b) shows the ac signal circuit of a differential amplifier. For the case of an active tail bias
supply, the resistor RQ represents its small-signal ac resistance. We assume that the transistors
are identical, biased at the same currents and voltages, and have identical small-signal parameters.
Looking out of the emitter of Q1, the Thévenin voltage and resistance are given by

vte1 = ve2(oc)
RQ

RQ +RE + rie

= vtb2
r0 +Rtc/ (1 + β)

r0e + r0 +Rtc/ (1 + β)

RQ
RQ +RE + rie

(81)
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Figure 19: (a) Second cascode amplifier. (b) Differential amplifier.

Rte1 = RE +RQk (RE + rie) (82)

The small-signal collector voltage of Q1 is given by

vo1 = −ic1(sc) (rickRtc) = − (Gmbvtb1 −Gmevte1) (rickRtc)
= −Gmb (rickRtc) vtb1

+Gme
r0 +Rtc/ (1 + β)

r0e + r0 +Rtc/ (1 + β)

RQ
rie +RE +RQ

vtb2 (83)

By symmetry, vo2 is obtained by interchanging the subscripts 1 and 2 in this equation. The small-
signal resistance seen looking into either output is

rout = Rtckric (84)

where ric calculated from Eq. (58) with Rte = RE +RQk (RE + rie). Although not labeled on the
circuit, the input resistance seen by both vtb1 and vtb2 is rin = rib.

A second solution of the diff amp can be obtained by replacing vtb1 and vtb2 with differential
and common-mode components as follows:

vtb1 = vi(cm) +
vi(d)

2
(85)

vtb2 = vi(cm) −
vi(d)

2
(86)

where vi(d) = vtb1−vtb2 and vi(cm) = (vtb1 + vtb2) /2. Superposition of vi(d) and vi(cm) can be used to
solve for vo1 and vo2. With vi(cm) = 0, the effects of vtb1 = vi(d)/2 and vtb2 = −vi(d)/2 are to cause
vq = 0. Thus the vq node can be grounded and the circuit can be divided into two common-emitter
stages in which Rte(d) = RE for each transistor. In this case, vo1(d) can be written

vo1(d) =
ic1(sc)

vtb1(d)
× vo1(d)

ic1(sc)
vtb1(d) = Gm(d)

¡−ric(d)kRtc¢ vi(d)2
= Gm(d)

¡−ric(d)kRtc¢ vtb1 − vtb22
(87)

By symmetry vo2(d) = −vo1(d).
With vi(d) = 0, the effects of vtb1 = vtb2 = vi(cm) are to cause the emitter currents in Q1 and

Q2 to change by the same amounts. If RQ is replaced by two parallel resistors of value 2RQ, it
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follows by symmetry that the circuit can be separated into two common-emitter stages each with
Rte(cm) = RE + 2RQ. In this case, vo1(cm) can be written

vo1(cm) =
ic1(sc)

vtb1(cm)
× vo1(cm)
ic1(sc)

vtb1(cm) = Gm(cm)
¡−ric(cm)kRtc¢ vi(cm)

= Gm(cm)
¡−ric(cm)kRtc¢ vtb1 + vtb22

(88)

By symmetry vo2(cm) = vo1(cm).
Because Rte is different for the differential and common-mode circuits, Gm, ric, and rib are

different. However, the total solution vo1 = vo1(d) + vo1(cm) is the same as that given by Eq. (83),
and similarly for vo2. The small-signal base currents can be written ib1 = vi(cm)/rib(cm)+vi(d)/rib(d)
and ib2 = vi(cm)/rib(cm)−vi(d)/rib(d). If RQ →∞, the common-mode solutions are zero. In this case,
the differential solutions can be used for the total solutions. If RQ À RE + rie, the common-mode
solutions are often approximated by zero.

Small-Signal High-Frequency Models

Figure 20 shows the hybrid-π and T models for the BJT with the base-emitter capacitance cπ and
the base-collector capacitance cµ added. The capacitor ccs is the collector-substrate capacitance
which in present in monolithic integrated-circuit devices but is omitted in discrete devices. These
capacitors model charge storage in the device which affects its high-frequency performance. The
capacitors are given by

cπ = cje +
τF IC
VT

(89)

cµ =
cjc

[1 + VCB/φC ]
mc

(90)

ccs =
cjcs

[1 + VCS/φC ]
mc

(91)

where IC is the dc collector current, VCB is the dc collector-base voltage, VCS is the dc collector-
substrate voltage, cje is the zero-bias junction capacitance of the base-emitter junction, τF is
the forward transit time of the base-emitter junction, cjc is the zero-bias junction capacitance of
the base-collector junction, cjcs is the zero-bias collector-substrate capacitance, φC is the built-in
potential, and mc is the junction exponential factor. For integrated circuit lateral pnp transistors,
ccs is replaced with a capacitor cbs from base to substrate, i.e. from the B node to ground.

Figure 20: High-frequency small-signal models of the BJT. (a) Hybrid-π model. (b) T model.
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In these models, the currents are related by

i0c = gmvπ = βi0b = αi0e (92)

These relations are the same as those in Eq. (47) with ib replaced with i0b.
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