(c) Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

Collection of Solved Feedback Amplifier Problems

This document contains a collection of solved feedback amplifier problems involving one or more active devices. The solutions make use of a graphical tool for solving simultaneous equations that is called the Mason Flow Graph (also called the Signal Flow Graph). When set up properly, the graph can be used to obtain by inspection the gain of a feedback amplifier, its input resistance, and its output resistance without solving simultaneous equations. Some background on how the equations are written and how the flow graph is used to solve them can be found at
http://users.ece.gatech.edu/ ~ mleach/ece3050/notes/feedback/fdbkamps.pdf

The gain of a feedback amplifier is usually written in the form $A \div(1+b A)$, where A is the gain with feedback removed and b is the feedback factor. In order for this equation to apply to the four types of feedback amplifiers, the input and output variables must be chosen correctly. For amplifiers that employ series summing at the input (alson called voltage summing), the input variable must be a voltage. In this case, the source is modeled as a Thévenin equivalent circuit. For amplifiers that employ shunt summing at the input (also called current summing), the input variable must be a current. In this case, the source is modeled as a Norton equivalent circuit. When the output sampling is in shunt with the load (also called voltage sampling), the output variable must be a voltage. When the output sampling is in series with the load (also called current sampling), the output variable must be a current. These conventions are followed in the following examples.

The quantity $A b$ is called the loop gain. For the feedback to be negative, the algebraic sign of $A b$ must be positive. If $A b$ is negative the feedback is positive and the amplifier is unstable. Thus if A is positive, b must also be positive. If A is negative, b must be negative. The quantity $(1+A b)$ is called the amount of feedback. It is often expressed in dB with the relation $20 \log (1+A b)$.

For series summing at the input, the expression for the input resistance is of the form $R_{I N} \times(1+b A)$, where $R_{I N}$ is the input resistance without feedback. For shunt summing at the input, the expression for the input resistance is of the form $R_{I N} \div(1+b A)$. For shunt sampling at the output, the expression for the output resistance is of the form $R_{O} \div(1+b A)$, where R_{O} is the output resistance without feedback. To calculate this in the examples, a test current source is added in shunt with the load. For series sampling at the output, the expression for the output resistance is of the form $R_{O} \times(1+b A)$. To calculate this in the examples, a test voltage source is added in series with the load.

Most texts neglect the feedforward gain through the feedback network in calculating the forward gain A. When the flow graph is used for the analysis, this feedforward gain can easily be included in the analysis without complicating the solution. This is done in all of the examples here.

The dc bias sources in the examples are not shown. It is assumed that the solutions for the dc voltages and currents in the circuits are known. In addition, it is assumed that any dc coupling capacitors in the circuits are ac short circuits for the small-signal analysis.

Series-Shunt Example 1

Figure 1(a) shows the ac signal circuit of a series-shunt feedback amplifier. The input variable is v_{1} and the output variable is v_{2}. The input signal is applied to the gate of M_{1} and the feedback signal is applied to the source of M_{1}. Fig. 1(b) shows the circuit with feedback removed. A test current source i_{t} is added in shunt with the output to calculate the output resistance R_{B}. The feedback at the source of M_{1} is modeled by a Thévenin equivalent circuit. The feedback factor or feedback ratio b is the coefficient of v_{2} in this source, i.e. $b=R_{1} /\left(R_{1}+R_{3}\right)$. The circuit values are $g_{m}=0.001 \mathrm{~S}, r_{s}=g_{m}^{-1}=1 \mathrm{k} \Omega, r_{0}=\infty, R_{1}=1 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega$, $R_{3}=9 \mathrm{k} \Omega, R_{4}=1 \mathrm{k} \Omega$, and $R_{5}=100 \mathrm{k} \Omega$.

The following equations can be written for the circuit with feedback removed:

$$
i_{d 1}=G_{m 1} v_{a} \quad G_{m 1}=\frac{1}{r_{s 1}+R_{1} \| R_{3}} \quad v_{a}=v_{1}-v_{t s 1} \quad v_{t s 1}=\frac{R_{1}}{R_{1}+R_{3}} v_{2} \quad i_{d 2}=-g_{m} v_{t g 2}
$$

Figure 1: (a) Amplifier circuit. (b) Circuit with feedback removed.

$$
v_{t g 2}=-i_{d 1} R_{2} \quad v_{2}=i_{d 2} R_{C}+i_{t} R_{C}+i_{d 1} R_{D} \quad R_{C}=R_{4} \|\left(R_{1}+R_{3}\right) \quad R_{D}=\frac{R_{1} R_{4}}{R_{1}+R_{3}+R_{4}}
$$

The voltage v_{a} is the error voltage. The negative feedback tends to reduce v_{a}, making $\left|v_{a}\right| \rightarrow 0$ as the amount of feedback becomes infinite. When this is the case, setting $v_{a}=0$ yields the voltage gain $v_{2} / v_{1}=$ $b^{-1}=1+R_{3} / R_{1}$. Although the equations can be solved algebraically, the signal-flow graph simplifies the solution.

Figure 2 shows the signal-flow graph for the equations. The determinant of the graph is given by

$$
\Delta=1-G_{m 1} \times\left[-R_{2} \times\left(-g_{m 2}\right) \times R_{C}+R_{D}\right] \times \frac{R_{1}}{R_{1}+R_{3}} \times(-1)
$$

Figure 2: Signal-flow graph for the equations.
The voltage gain v_{2} / v_{1} is calculated with $i_{t}=0$. It is given by

$$
\begin{aligned}
\frac{v_{2}}{v_{1}} & =\frac{G_{m 1} \times\left[-R_{2} \times\left(-g_{m 2}\right) \times R_{C}+R_{D}\right]}{\Delta} \\
& =\frac{\frac{1}{r_{s 1}+R_{1} \| R_{3}} \times\left(R_{2} \times g_{m 2} \times R_{C}+R_{D}\right)}{1+\frac{1}{r_{s 1}+R_{1} \| R_{3}} \times\left(R_{2} \times g_{m 2} \times R_{C}+R_{D}\right) \times \frac{R_{1}}{R_{1}+R_{3}}}
\end{aligned}
$$

This is of the form

$$
\frac{v_{2}}{v_{1}}=\frac{A}{1+A b}
$$

where

$$
\begin{gathered}
A=\frac{1}{r_{s 1}+R_{1} \| R_{3}} \times\left(R_{2} \times g_{m 2} \times R_{C}+R_{D}\right)=4.83 \\
b=\frac{R_{1}}{R_{1}+R_{3}}=0.1
\end{gathered}
$$

Note that $A b$ is dimensionless. Numerical evaluation yields

$$
\frac{v_{2}}{v_{1}}=\frac{4.83}{1+0.483}=3.26
$$

The output resistance R_{B} is calculated with $v_{1}=0$. It is given by

$$
R_{B}=\frac{v_{2}}{i_{t}}=\frac{R_{C}}{\Delta}=\frac{R_{C}}{1+A b}=613 \Omega
$$

Note that the feedback tends to decrease R_{B}. Because the gate current of M_{1} is zero, the input resistance is $R_{A}=R_{5}=100 \mathrm{k} \Omega$.

Series-Shunt Example 2

A series-shunt feedback BJT amplifier is shown in Fig. 3(a). A test current source is added to the output to solve for the output resistance. Solve for the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. Assume $\beta=100, r_{\pi}=10 \mathrm{k} \Omega, \alpha=\beta /(1+\beta), g_{m}=\beta / r_{\pi}, r_{e}=\alpha / g_{m}, r_{0}=\infty, r_{x}=0$, $R_{1}=1 \mathrm{k} \Omega, R_{2}=1 \mathrm{k} \Omega, R_{3}=2 \mathrm{k} \Omega, R_{4}=4 \mathrm{k} \Omega$, and $R_{5}=10 \mathrm{k} \Omega$. The circuit with feedback removed is shown in Fig. 3(b). The circuit seen looking out of the emitter of Q_{1} is replaced with a Thévenin equivalent circuit made with respect to v_{2}. A test current source i_{t} is added to the output to solve for the output resistance.

Figure 3: (a) Amplifier circuit. (b) Circuit with feedback removed.
For the circuit with feedback removed, we can write

$$
\begin{gathered}
i_{e 1}=G_{1} v_{a} \quad v_{a}=v_{1}-v_{2} \frac{R_{3}}{R_{3}+R_{4}} \quad G_{1}=\frac{1}{r_{e 1}^{\prime}+R_{3} \| R_{4}} \quad r_{e 1}^{\prime}=\frac{R_{1}}{1+\beta}+r_{e} \quad i_{c 1}=\alpha i_{e 1} \\
i_{b 1}=\frac{i_{c 1}}{\beta} \quad v_{t b 2}=-i_{c 1} R_{2} \quad i_{e 2}=-G_{2} v_{t b 2} \quad G_{2}=\frac{1}{r_{e 2}^{\prime}} \quad r_{e 2}^{\prime}=\frac{R_{2}}{1+\beta}+r_{e}
\end{gathered}
$$

$$
i_{c 2}=\alpha i_{e 2} \quad v_{2}=i_{c 2} R_{a}+i_{t} R_{a}+i_{e 1} R_{b} \quad R_{a}=R_{5} \|\left(R_{3}+R_{4}\right) \quad R_{b}=\frac{R_{3} R_{5}}{R_{3}+R_{4}+R_{5}}
$$

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 4. The determinant is

$$
\begin{aligned}
\Delta & =1-G_{1} \times\left[\alpha \times-R_{2} \times-G_{2} \times \alpha \times R_{a}+R_{b}\right] \times \frac{-R_{3}}{R_{3}+R_{4}} \\
& =1+G_{1} \times\left[\alpha \times R_{2} \times G_{2} \times \alpha \times R_{a}+R_{b}\right] \times \frac{R_{3}}{R_{3}+R_{4}} \\
& =9.09
\end{aligned}
$$

Figure 4: Signal-flow graph for the equations.
The voltage gain is

$$
\begin{aligned}
\frac{v_{2}}{v_{1}} & =\frac{G_{1} \times\left[\alpha \times-R_{2} \times-G_{2} \times \alpha \times R_{a}+R_{b}\right]}{\Delta} \\
& =\frac{G_{1} \times\left[\alpha \times R_{2} \times G_{2} \times \alpha \times R_{a}+R_{b}\right]}{1+G_{1} \times\left[\alpha \times R_{2} \times G_{2} \times \alpha \times R_{a}+R_{b}\right] \times \frac{R_{3}}{R_{3}+R_{4}}}
\end{aligned}
$$

This is of the form

$$
\frac{v_{2}}{i_{1}}=\frac{A}{1+A b}
$$

where

$$
\begin{aligned}
& A= G_{1} \times\left[\alpha \times R_{2} \times G_{2} \times \alpha \times R_{a}+R_{b}\right] \\
&= \frac{1}{r_{e 1}^{\prime}+R_{3} \| R_{4}}\left[\alpha \times R_{2} \times \frac{1}{r_{e 2}^{\prime}} \times \alpha \times R_{5} \|\left(R_{3}+R_{4}\right)+\frac{R_{3} R_{5}}{R_{3}+R_{4}+R_{5}}\right] \\
&= 24.27 \\
& \quad b=\frac{R_{3}}{R_{3}+R_{4}}=0.333
\end{aligned}
$$

Notice that the product $A b$ is positive. This must be true for the feedback to be negative.
Numerical evaluation of the voltage gain yields

$$
\frac{v_{2}}{v_{1}}=\frac{A}{\Delta}=2.67
$$

The resistances R_{A} and R_{B} are given by

$$
\begin{gathered}
R_{A}=\left(\frac{i_{b 1}}{v_{1}}\right)^{-1}=\left(\frac{G_{1} \alpha / \beta}{\Delta}\right)^{-1}=\Delta \times \frac{\beta r_{e 1}^{\prime}}{\alpha}=\Delta \times \frac{\beta}{\alpha}\left(r_{e 1}^{\prime}+R_{3} \| R_{4}\right)=1.32 \mathrm{M} \Omega \\
R_{B}=\frac{v_{2}}{i_{t}}=\frac{R_{a}}{\Delta}=\frac{R_{5} \|\left(R_{3}+R_{4}\right)}{\Delta}=412.5 \Omega
\end{gathered}
$$

Series-Shunt Example 3

A series-shunt feedback BJT amplifier is shown in Fig. 5(a). Solve for the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. For J_{1}, assume $g_{m 1}=0.003 \mathrm{~S}$, and $r_{01}=\infty$. For Q_{2}, assume $\beta_{2}=100, r_{\pi 2}=2.5 \mathrm{k} \Omega, \alpha_{2}=\beta_{2} /\left(1+\beta_{2}\right), g_{m 2}=\beta_{2} / r_{\pi 2}, r_{e 2}=\alpha_{2} / g_{m 2}, r_{02}=\infty, r_{x 2}=0$. The circuit elements are $R_{1}=1 \mathrm{M} \Omega . R_{2}=10 \mathrm{k} \Omega, R_{3}=1 \mathrm{k} \Omega, R_{4}=20 \mathrm{k} \Omega$, and $R_{5}=10 \mathrm{k} \Omega$. The circuit with feedback removed is shown in Fig. 5(b). The circuit seen looking out of the source of J_{1} is replaced with a Thévenin equivalent circuit made with respect to v_{2}. A test current source i_{t} is added in shunt with the output to solve for the output resistance.

Figure 5: (a) Amplifier circuit. (b) Circuit with feedback removed.
For the circuit with feedback removed, we can write

$$
\begin{gathered}
v_{a}=v_{1}-v_{2} \frac{R_{3}}{R_{3}+R_{4}} \quad i_{d 1}=G_{1} v_{a} \quad G_{1}=\frac{1}{r_{s 1}+R_{3} \| R_{4}} \\
v_{t b 2}=-i_{d 1} R_{2} \quad i_{e 2}=-G_{2} v_{t b 2} \quad G_{2}=\frac{1}{r_{e 2}^{\prime}} \quad r_{e 2}^{\prime}=\frac{R_{2}}{1+\beta_{2}}+r_{e 2} \\
i_{c 2}=\alpha_{2} i_{e 2} \quad v_{2}=i_{c 2} R_{a}+i_{t} R_{a}+i_{d 1} R_{b} \quad R_{a}=R_{5} \|\left(R_{3}+R_{4}\right) \quad R_{b}=\frac{R_{3} R_{5}}{R_{3}+R_{4}+R_{5}}
\end{gathered}
$$

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 6. The determinant is

$$
\begin{aligned}
\Delta & =1-G_{1} \times\left[-R_{2} \times-G_{2} \times \alpha \times R_{a}+R_{b}\right] \times \frac{-R_{3}}{R_{3}+R_{4}} \\
& =1+G_{1} \times\left[R_{3} \times G_{2} \times \alpha \times R_{a}+R_{b}\right] \times \frac{R_{3}}{R_{3}+R_{4}} \\
& =21.08
\end{aligned}
$$

The voltage gain is

$$
\begin{aligned}
\frac{v_{2}}{v_{1}} & =\frac{G_{1} \times\left[-R_{2} \times-G_{2} \times \alpha_{2} \times R_{a}+R_{b}\right]}{\Delta} \\
& =\frac{G_{1} \times\left[R_{2} \times G_{2} \times \alpha_{2} \times R_{a}+R_{b}\right]}{1+G_{1} \times\left[R_{3} \times G_{2} \times \alpha \times R_{a}+R_{b}\right] \times \frac{R_{3}}{R_{3}+R_{4}}}
\end{aligned}
$$

Figure 6: Signal-flow graph for the equations.

This is of the form

$$
\frac{v_{2}}{i_{1}}=\frac{A}{\Delta}=\frac{A}{1+A b}
$$

where

$$
\begin{aligned}
& A= G_{1} \times\left[R_{2} \times G_{2} \times \alpha_{2} \times R_{a}+R_{b}\right] \\
&= \frac{1}{r_{s 1}+R_{3} \| R_{4}}\left[R_{2} \times \frac{1}{r_{e 1}^{\prime}} \times \alpha_{1} \times R_{5} \|\left(R_{3}+R_{4}\right)+\frac{R_{3} R_{4}}{R_{3}+R_{4}+R_{5}}\right] \\
&= 421.8 \\
& \quad b=\frac{R_{3}}{R_{3}+R_{4}}=0.0467
\end{aligned}
$$

Notice that the product $A b$ is positive. This must be true for the feedback to be negative.
Numerical evaluation of the voltage gain yields

$$
\frac{v_{2}}{v_{1}}=\frac{421.8}{1+421.8 \times 0.0476}=20
$$

The resistances R_{A} and R_{B} are given by

$$
\begin{gathered}
R_{A}=R_{1}=1 \mathrm{M} \Omega \\
R_{B}=\frac{v_{2}}{i_{t}}=\frac{R_{a}}{\Delta}=\frac{R_{5} \|\left(R_{3}+R_{4}\right)}{\Delta}=321.3 \Omega
\end{gathered}
$$

Series-Shunt Example 4

A series-shunt feedback BJT amplifier is shown in Fig. 7(a). A test current source is added to the output to solve for the output resistance. Solve for the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. Assume $\beta=50, r_{\pi}=2.5 \mathrm{k} \Omega, \alpha=\beta /(1+\beta), g_{m}=\beta / r_{\pi}, r_{e}=\alpha / g_{m}, r_{0}=\infty, r_{x}=0$, $R_{1}=1 \mathrm{k} \Omega, R_{2}=100 \Omega, R_{3}=9.9 \mathrm{k} \Omega, R_{4}=10 \mathrm{k} \Omega$, and $R_{5}=10 \mathrm{k} \Omega$. The circuit with feedback removed is shown in Fig. 8. The circuit seen looking out of the base of Q_{2} is a Thévenin equivalent circuit made with respect to the voltage v_{2}. A test current source i_{t} is added in shunt with the output to solve for the output resistance.

The emitter eQuivalent circuit for calculating $i_{e 1}$ and $i_{e 2}$ is shown in Fig. 7(b). For this circuit and the circuit with feedback removed, we can write

$$
\begin{gathered}
i_{e 1}=G_{1} v_{e} \quad v_{e}=v_{1}-v_{2} \frac{R_{2}}{R_{2}+R_{3}} \quad G_{1}=\frac{1}{r_{e 1}+r_{e 2}^{\prime}} \quad r_{e 2}^{\prime}=\frac{R_{2} \| R_{3}}{1+\beta}+r_{e} \quad i_{c 1}=\alpha i_{e 1} \\
i_{b 1}=\frac{i_{c 1}}{\beta} \quad v_{t b 3}=-i_{c 1} R_{1} \quad i_{e 3}=-G_{2} v_{t b 3} \quad G_{2}=\frac{1}{r_{e 3}^{\prime}} \quad r_{e 3}^{\prime}=\frac{R_{1}}{1+\beta}+r_{e} \\
i_{c 3}=\alpha i_{e 3} \quad v_{2}=i_{c 3} R_{a}+i_{t} R_{a}-i_{b 2} R_{b} \quad R_{a}=R_{4} \|\left(R_{2}+R_{3}\right) \quad R_{b}=\frac{R_{2} R_{4}}{R_{2}+R_{3}+R_{4}}
\end{gathered}
$$

(b)

Figure 7: (a) Amplifier circuit. (b) Emitter equivalent circuit for calculating $i_{e 1}$ and $i_{e 2}$.

Figure 8: Circuit with feedback removed.

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 9. The determinant is

$$
\begin{aligned}
\Delta & =1-G_{1} \times\left(\alpha \times-R_{1} \times-G_{2} \times \alpha \times R_{a}-\frac{R_{b}}{1+\beta}\right) \times \frac{-R_{2}}{R_{2}+R_{3}} \\
& =1+G_{1} \times\left(\alpha \times R_{1} \times G_{2} \times \alpha \times R_{a}-\frac{R_{b}}{1+\beta}\right) \times \frac{R_{2}}{R_{2}+R_{3}} \\
& =8.004
\end{aligned}
$$

Figure 9: Flow graph for the equations.
The voltage gain is

$$
\begin{aligned}
\frac{v_{2}}{v_{1}} & =\frac{G_{1} \times\left(\alpha \times-R_{1} \times-G_{2} \times \alpha \times R_{a}-\frac{R_{b}}{1+\beta}\right)}{\Delta} \\
& =\frac{G_{1} \times\left(\alpha \times R_{1} \times G_{2} \times \alpha \times R_{a}-\frac{R_{b}}{1+\beta}\right)}{1+G_{1} \times\left(\alpha \times R_{1} \times G_{2} \times \alpha \times R_{a}-\frac{R_{b}}{1+\beta}\right) \times \frac{R_{2}}{R_{2}+R_{3}}}
\end{aligned}
$$

This is of the form

$$
\frac{v_{2}}{i_{1}}=\frac{A}{1+A b}
$$

where

$$
\begin{aligned}
& A= G_{1} \times\left(\alpha \times R_{1} \times G_{2} \times \alpha \times R_{a}-\frac{R_{b}}{1+\beta}\right) \\
& \frac{1}{r_{e 1}+r_{e 2}^{\prime}}\left[\alpha \times R_{1} \times \frac{1}{r_{e 3}^{\prime}} \times \alpha \times R_{4} \|\left(R_{2}+R_{3}\right)-\frac{1}{1+\beta} \frac{R_{2} R_{4}}{R_{2}+R_{3}+R_{4}}\right] \\
& 700.4 \\
& \quad b=\frac{R_{2}}{R_{2}+R_{3}}=0.01
\end{aligned}
$$

Notice that the product $A b$ is positive. This must be true for the feedback to be negative.
Numerical evaluation of the voltage gain yields

$$
\frac{v_{2}}{v_{1}}=\frac{A}{\Delta}=87.51
$$

The resistances R_{A} and R_{B} are given by

$$
\begin{gathered}
R_{A}=R_{5}\left\|\left(\frac{i_{b 1}}{v_{1}}\right)^{-1}=R_{5}\right\|\left(\frac{G_{1} \alpha / \beta}{\Delta}\right)^{-1}=R_{5} \|\left[\Delta \times(1+\beta) \times\left(r_{e 1}+r_{e 2}^{\prime}\right)\right]=8.032 \mathrm{k} \Omega \\
R_{B}=\frac{v_{2}}{i_{t}}=\frac{R_{a}}{\Delta}=\frac{R_{4} \|\left(R_{2}+R_{3}\right)}{\Delta}=624.7 \Omega
\end{gathered}
$$

Shunt-Shunt Example 1

Figure 10 (a) shows the ac signal circuit of a shunt-series feedback amplifier. The input variable is v_{1} and the output variable is v_{2}. The input signal and the feedback signal are applied to the base of Q_{1}. A test current source i_{t} is added in shunt with the output to calculate the output resistance R_{B}. For the analysis to follow convention, the input source consisting of v_{1} in series with R_{1} must be converted into a Norton equivalent. This circuit is the current $i_{1}=v_{1} / R_{1}$ in parallel with the resistor R_{1}. Fig. $10(\mathrm{~b})$ shows the circuit with feedback removed and the source replaced with the Norton equivalent. The feedback at the base of Q_{1} is modeled by a Norton equivalent circuit v_{2} / R_{4} in parallel with the resistor R_{4}. The feedback factor or feedback ratio b is the negative of the coefficient of v_{2} in this source, i.e. $b=-R_{4}^{-1}$. The circuit values are $\beta_{1}=100, g_{m 1}=0.05 \mathrm{~S}, r_{x 1}=0, r_{i b 1}=\beta_{1} / g_{m 1}=2 \mathrm{k} \Omega, r_{01}=\infty, g_{m 2}=0.001 \mathrm{~S}, r_{s 2}=g_{m 2}^{-1}=1 \mathrm{k} \Omega$, $r_{02}=\infty, R_{1}=1 \mathrm{k} \Omega, R_{2}=1 \mathrm{k} \Omega, R_{3}=10 \mathrm{k} \Omega$, and $R_{4}=10 \mathrm{k} \Omega$.

Figure 10: (a) Amplifier circuit. (b) Circuit with feedback removed.
The following equations can be written for the circuit with feedback removed:

$$
\begin{gathered}
v_{b 1}=i_{a} R_{b} \quad i_{a}=i_{1}+\frac{v_{2}}{R_{4}} \quad R_{b}=R_{1}\left\|R_{4}\right\| r_{i b 1} \quad i_{c 1}=g_{m 1} v_{b 1} \\
i_{d 1}=-i_{c 1} \frac{R_{2}}{r_{s 1}+R_{2}} \quad v_{2}=i_{d 1} R_{c}+i_{t} R_{c}+v_{b 1} \frac{R_{3}}{R_{3}+R_{4}} \quad R_{c}=R_{3} \| R_{4}
\end{gathered}
$$

The current i_{a} is the error current. The negative feedback tends to reduce i_{a}, making $\left|i_{a}\right| \rightarrow 0$ as the amount of feedback becomes infinite. When this is the case, setting $i_{a}=0$ yields the current gain $v_{2} / i_{1}=-R_{4}$.

Although the equations can be solved algebraically, the signal-flow graph simplifies the solution. Figure 11 shows the flow graph for the equations. The determinant of the graph is given by

$$
\Delta=1-R_{b} \times\left[g_{m 1} \times \frac{-R_{2}}{r_{s 1}+R_{2}} \times R_{c}+\frac{R_{3}}{R_{3}+R_{4}}\right] \times \frac{1}{R_{4}}
$$

The transresistance gain is calculated with $i_{t}=0$. It is given by

$$
\begin{aligned}
\frac{v_{2}}{i_{1}} & =\frac{R_{b} \times\left(g_{m 1} \times \frac{-R_{2}}{r_{s 2}+R_{2}} \times R_{c}+\frac{R_{3}}{R_{3}+R_{4}}\right)}{\Delta} \\
= & -\frac{\left(R_{1}\left\|R_{4}\right\| r_{i b 1}\right) \times\left[g_{m 1} \times \frac{-R_{2}}{r_{s 2}+R_{2}} \times\left(R_{3} \| R_{4}\right)+\frac{R_{3}}{R_{3}+R_{4}}\right]}{1+\left[\left(R_{1}\left\|R_{4}\right\| r_{i b 1}\right) \times g_{m 1} \times \frac{-R_{2}}{r_{s 2}+R_{2}} \times\left(R_{3} \| R_{4}\right)+\frac{R_{3}}{R_{3}+R_{4}}\right] \times \frac{-1}{R_{4}}}
\end{aligned}
$$

Figure 11: Signal-flow graph for the equations.

This is of the form

$$
\frac{v_{2}}{i_{1}}=\frac{A}{1+A b}
$$

where

$$
\begin{gathered}
A=\left(R_{1}\left\|R_{4}\right\| r_{i b 1}\right) \times\left[g_{m 1} \times \frac{-R_{2}}{r_{s 2}+R_{2}} \times\left(R_{3} \| R_{4}\right)+\frac{R_{3}}{R_{3}+R_{4}}\right]=-77.81 \mathrm{k} \Omega \\
b=-\frac{1}{R_{4}}=-10^{-4} \mathrm{~S}
\end{gathered}
$$

Note that $A b$ is dimensionless and positive. Numerical evaluation yields

$$
\frac{v_{2}}{i_{1}}=\frac{-77.81 \times 10^{3}}{1+\left(-77.81 \times 10^{3}\right) \times\left(-10^{-4}\right)}=-8.861 \mathrm{k} \Omega
$$

The voltage gain is given by

$$
\frac{v_{2}}{v_{1}}=\frac{v_{2}}{i_{1}} \times \frac{i_{1}}{v_{1}}=\frac{v_{2}}{i_{1}} \times \frac{1}{R_{1}}=-8.861
$$

The resistance R_{a} is calculated with $i_{t}=0$. It is given by

$$
R_{a}=\frac{v_{b 1}}{i_{1}}=\frac{R_{b}}{\Delta}=\frac{R_{1}\left\|R_{4}\right\| r_{i b 1}}{1+A b}=71.17 \Omega
$$

Note that the feedback tends to decrease R_{a}. The resistance R_{A} is calculated as follows:

$$
R_{A}=R_{1}+\left(R_{a}^{-1}-R_{1}^{-1}\right)^{-1}=1.077 \mathrm{k} \Omega
$$

The resistance R_{B} is calculated with $i_{1}=0$. It is given by

$$
R_{B}=\frac{v_{2}}{i_{t}}=\frac{R_{c}}{\Delta}=\frac{R_{3} \| R_{4}}{1+A b}=569.4 \Omega
$$

Shunt-Shunt Example 2

A shunt-shunt feedback JFET amplifier is shown in Fig. 12(a). Solve for the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. Assume $g_{m}=0.005 \mathrm{~S}, r_{s}=g_{m}^{-1}=200 \Omega, r_{0}=\infty, R_{1}=3 \mathrm{k} \Omega$, $R_{2}=7 \mathrm{k} \Omega, R_{3}=1 \mathrm{k} \Omega, R_{4}=10 \mathrm{k} \Omega$. The circuit with feedback removed is shown in Fig. 12(b) In this circuit, the source is replaced by a Norton equivalent circuit consisting of a current $i_{1}=v_{1} / R_{1}$ in parallel with the resistor R_{1}. This is necessary for the feedback analysis to conform to convention for shunt-shunt feedback.. The circuit seen looking up into R_{2} is replaced with a Norton equivalent circuit made with respect to v_{2}. A test current source i_{t} is added in shunt with the output to solve for the output resistance.

Figure 12: (a) Amplifier circuit. (b) Circuit with feedback removed.

For the circuit with feedback removed, we can write

$$
\begin{gathered}
v_{g}=i_{1} R_{b}+\frac{v_{2}}{R_{2}} R_{b} \quad R_{b}=R_{1} \| R_{2} \quad i_{d}=G_{m} v_{g} \quad G_{m}=\frac{1}{r_{s}+R_{3}} \\
v_{2}=-i_{d} R_{c}+i_{t} R_{c}+v_{g} \frac{R_{4}}{R_{2}+R_{4}} \quad R_{c}=R_{2} \| R_{4}
\end{gathered}
$$

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 13. The determinant is

$$
\begin{aligned}
\Delta & =1-R_{b} \times\left[G_{m} \times-R_{c}+\frac{R_{4}}{R_{2}+R_{4}}\right] \times \frac{1}{R_{2}} \\
& =1+R_{b} \times\left[G_{m} \times R_{c}-\frac{R_{4}}{R_{2}+R_{4}}\right] \times \frac{1}{R_{2}} \\
& =1.853 \Omega
\end{aligned}
$$

Figure 13: Signal-flow graph for the equations.

The transresistance gain is

$$
\begin{aligned}
\frac{v_{2}}{i_{1}} & =\frac{R_{b} \times\left[G_{m} \times-R_{c}+\frac{R_{4}}{R_{2}+R_{4}}\right]}{\Delta} \\
= & \frac{-R_{b} \times\left[G_{m} \times R_{c}-\frac{R_{4}}{R_{2}+R_{4}}\right]}{1+R_{b} \times\left[G_{m} \times R_{c}+\frac{R_{4}}{R_{2}+R_{4}}\right] \times \frac{1}{R_{2}}}
\end{aligned}
$$

This is of the form

$$
\frac{v_{2}}{i_{1}}=\frac{A}{1+A b}
$$

where

$$
\begin{aligned}
A & =-R_{b} \times\left[G_{m} \times R_{c}-\frac{R_{4}}{R_{2}+R_{4}}\right] \\
& =-\left(R_{1} \| R_{2}\right) \times\left[G_{m} \times R_{2} \| R_{4}-\frac{R_{4}}{R_{2}+R_{4}}\right] \\
& =-5.971 \mathrm{k} \Omega \\
& \quad b=-\frac{1}{R_{2}}=-0.1429 \mathrm{mS}
\end{aligned}
$$

Note that the product $A b$ is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation yields

$$
\frac{v_{2}}{i_{1}}=\frac{A}{\Delta}=-3.22 \mathrm{k} \Omega
$$

The voltage gain is given by

$$
\frac{v_{2}}{v_{1}}=\frac{v_{2}}{i_{1}} \times \frac{i_{1}}{v_{1}}=\frac{A}{\Delta} \times \frac{1}{R_{1}}=-1.074
$$

The resistances R_{a}, R_{A}, and R_{B} are given by

$$
\begin{gathered}
R_{a}=\frac{v_{g}}{i_{1}}=\frac{R_{b}}{\Delta}=1.13 \mathrm{k} \Omega \\
R_{A}=R_{1}+\left(\frac{1}{R_{a}}-\frac{1}{R_{1}}\right)^{-1}=4.82 \mathrm{k} \Omega \\
R_{B}=\frac{v_{2}}{i_{t}}=\frac{R_{c}}{\Delta}=2.22 \mathrm{k} \Omega
\end{gathered}
$$

Shunt-Shunt Example 3

A shunt-shunt feedback BJT amplifier is shown in Fig. 14. The input variable is the v_{1} and the output variable is the voltage v_{2}. The feedback resistor is R_{2}. The summing at the input is shunt because the input through R_{1} and the feedback through R_{2} connect in shunt to the same node, i.e. the $v_{b 1}$ node. The output sampling is shunt because R_{2} connects to the output node. Solve for the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. Assume $\beta=100, r_{\pi}=2.5 \mathrm{k} \Omega, g_{m}=\beta / r_{\pi}, \alpha=\beta /(1+\beta)$, $r_{e}=\alpha / g_{m}, r_{0}=\infty, r_{x}=0, V_{T}=25 \mathrm{mV}$. The resistor values are $R_{1}=1 \mathrm{k} \Omega, R_{2}=20 \mathrm{k} \Omega, R_{3}=500 \Omega$, $R_{4}=1 \mathrm{k} \Omega$, and $R_{5}=5 \mathrm{k} \Omega$.

The circuit with feedback removed is shown in Fig. 15. A test current source i_{t} is added in shunt with the output to solve for the output resistance R_{B}. In the circuit, the source is replaced by a Norton equivalent circuit consisting of a current

$$
i_{1}=\frac{v_{1}}{R_{1}}
$$

Figure 14: Amplifier circuit.

Figure 15: Circuit with feedback removed.
in parallel with the resistor R_{1}. This is necessary for the feedback analysis to conform to convention for shunt summing. The circuit seen looking into R_{2} from the collector of Q_{3} is replaced with a Thevenin equivalent circuit made with respect with $v_{b 1}$.

For the circuit with feedback removed, we can write

$$
\begin{array}{cccc}
i_{e}=i_{1}+\frac{v_{2}}{R_{2}} & v_{b 1}=i_{e} R_{b} & R_{b}=R_{1}\left\|R_{2}\right\| r_{\pi} & i_{c 1}=g_{m} v_{b 1}
\end{array} v_{b 2}=-i_{c 1} R_{c} \quad R_{c}=R_{3} \| r_{\pi} .
$$

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 16. The determinant is

$$
\begin{aligned}
\Delta & =1-R_{b} \times\left(g_{m} \times-R_{c} \times g_{m} \times-R_{d} \times g_{m} \times-R_{e}+\frac{R_{5}}{R_{2}+R_{5}}\right) \times \frac{1}{R_{2}} \\
& =1+R_{b} \times\left(g_{m} \times R_{c} \times g_{m} \times R_{d} \times g_{m} \times R_{e}-\frac{R_{5}}{R_{2}+R_{5}}\right) \times \frac{1}{R_{2}} \\
& =354.7
\end{aligned}
$$

Figure 16: Signal-flow graph for the equations.

The transresistance gain is

$$
\begin{aligned}
\frac{v_{2}}{i_{1}}= & \frac{R_{b} \times\left(g_{m} \times-R_{c} \times g_{m} \times-R_{d} \times g_{m} \times-R_{e}+\frac{R_{2}}{R_{2}+R_{5}}\right)}{\Delta} \\
= & \frac{-R_{b} \times\left(g_{m} \times R_{c} \times g_{m} \times R_{d} \times g_{m} \times R_{e}-\frac{R_{2}}{R_{2}+R_{5}}\right)}{1+R_{b} \times\left(g_{m} \times R_{c} \times g_{m} \times R_{d} \times g_{m} \times R_{e}-\frac{R_{2}}{R_{2}+R_{5}}\right) \times \frac{1}{R_{2}}} \\
= & \frac{-R_{b} \times\left(g_{m} \times R_{c} \times g_{m} \times R_{d} \times g_{m} \times R_{e}-\frac{R_{2}}{R_{2}+R_{5}}\right)}{1+\left[-R_{b} \times\left(g_{m} \times R_{c} \times g_{m} \times R_{d} \times g_{m} \times R_{e}-\frac{R_{2}}{R_{2}+R_{5}}\right)\right] \times \frac{-1}{R_{2}}}
\end{aligned}
$$

This is of the form

$$
\frac{i_{e 2}}{v_{1}}=\frac{A}{1+A b}
$$

where A and b are given by

$$
\begin{aligned}
A= & -R_{b} \times\left(g_{m} \times R_{c} \times g_{m} \times R_{d} \times g_{m} \times R_{e}-\frac{R_{5}}{R_{2}+R_{5}}\right) \\
= & -R_{1}\left\|R_{2}\right\| r_{\pi} \times\left(g_{m} \times R_{3}\left\|r_{\pi} \times g_{m} \times R_{4}\right\| r_{\pi} \times g_{m} \times R_{2} \| R_{5}-\frac{R_{5}}{R_{2}+R_{5}}\right) \\
= & -7.073 \mathrm{M} \Omega \\
& \quad b=\frac{-1}{R_{2}}=-50 \mu \mathrm{~S}
\end{aligned}
$$

Notice that the product $A b$ is dimensionless and positive. The latter must be true for the feedback to be negative.

Numerical evaluation of the transresistance gain yields

$$
\frac{v_{2}}{i_{1}}=\frac{A}{\Delta}=-19.94 \mathrm{k} \Omega
$$

The resistances R_{a} and R_{A} are

$$
\begin{gathered}
R_{a}=\frac{v_{b 1}}{i_{1}}=\frac{R_{c}}{\Delta}=1.945 \Omega \\
R_{A}=R_{1}+\left(\frac{1}{R_{a}}-\frac{1}{R_{1}}\right)^{-1}=1.002 \mathrm{k} \Omega
\end{gathered}
$$

The resistance R_{B} is

$$
R_{B}=\frac{v_{2}}{i_{t}}=\frac{R_{e}}{\Delta}=11.28 \Omega
$$

The voltage gain is

$$
\frac{v_{2}}{v_{b 1}}=\frac{v_{2}}{i_{1}} \times\left(\frac{v_{b 1}}{i_{1}}\right)^{-1}=\left(\frac{A}{\Delta}\right) \times \frac{1}{R_{A}}=-19.91
$$

Shunt-Shunt Example 4

A shunt-shunt feedback BJT amplifier is shown in Fig. 17. The input variable is the v_{1} and the output variable is the voltage v_{2}. The feedback resistor is R_{2}. The summing at the input is shunt because the input through R_{1} and the feedback through R_{2} connect in shunt to the same node, i.e. the $v_{e 1}$ node. The output sampling is shunt because R_{2} connects to the output node. Solve for the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. For Q_{1} and Q_{2}, assume $\beta=100, r_{\pi}=2.5 \mathrm{k} \Omega, g_{m}=\beta / r_{\pi}$, $\alpha=\beta /(1+\beta), r_{e}=\alpha / g_{m}, r_{0}=\infty, r_{x}=0, V_{T}=25 \mathrm{mV}$. For J_{3}, assume $g_{m 3}=0.001 \mathrm{~S}$ and $r_{03}=\infty$. The resistor values are $R_{1}=1 \mathrm{k} \Omega, R_{2}=100 \mathrm{k} \Omega, R_{3}=10 \Omega, R_{4}=30 \mathrm{k} \Omega$, and $R_{5}=10 \mathrm{k} \Omega$.

Figure 17: Amplifier circuit.
The circuit with feedback removed is shown in Fig. 18. A test current source i_{t} is added in shunt with the output to solve for the output resistance R_{B}. In the circuit, the source is replaced by a Norton equivalent circuit consisting of a current

$$
i_{1}=\frac{v_{1}}{R_{1}}
$$

in parallel with the resistor R_{1}. This is necessary for the feedback analysis to conform to convention for shunt summing. The circuit seen looking into R_{2} from the collector of Q_{3} is replaced with a Thévenin equivalent circuit made with respect with $v_{e 1}$.

Figure 18: Circuit with feedback removed.

For the circuit with feedback removed, we can write

$$
\begin{gathered}
i_{e}=i_{1}+\frac{v_{2}}{R_{2}} \quad v_{e 1}=i_{e} R_{b} \quad R_{b}=R_{1}\left\|R_{2}\right\| r_{e 1} \quad i_{c 1}=g_{m 1} v_{e 1} \quad v_{t g 3}=i_{c 1} R_{3} \\
i_{d 3}=g_{m 3} v_{t g 3} \quad v_{t b 2}=-i_{d 3} R_{4} \quad i_{e 2}=-G_{1} v_{t b 2} \quad G_{1}=\frac{1}{r_{e 2}^{\prime}+R_{2} \| R_{5}} \quad r_{e 2}^{\prime}=\frac{1}{R_{4}}+r_{e 2} \\
v_{2}=\left(-i_{e 2}+i_{t}\right) R_{c}+v_{e 1} \frac{R_{5}}{R_{2}+R_{5}} \quad R_{c}=R_{2} \| R_{5}
\end{gathered}
$$

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 19. The determinant is

$$
\begin{aligned}
\Delta & =1-R_{b} \times\left(g_{m 1} \times R_{3} \times g_{m 2} \times-R_{4} \times-G_{1} \times-R_{c}+\frac{R_{5}}{R_{2}+R_{5}}\right) \times \frac{1}{R_{2}} \\
& =1+R_{b} \times\left(g_{m 1} \times R_{3} \times g_{m 2} \times R_{4} \times G_{1} \times R_{c}-\frac{R_{5}}{R_{2}+R_{5}}\right) \times \frac{1}{R_{2}} \\
& =113.0
\end{aligned}
$$

Figure 19: Signal-flow graph for the equations.
The transresistance gain is

$$
\begin{aligned}
\frac{v_{2}}{i_{1}}= & \frac{R_{b} \times\left(g_{m 1} \times R_{3} \times g_{m 2} \times-R_{4} \times-G_{1} \times-R_{c}+\frac{R_{2}}{R_{2}+R_{5}}\right)}{\Delta} \\
= & \frac{-R_{b} \times\left(g_{m 1} \times R_{3} \times g_{m 2} \times R_{4} \times G_{1} \times R_{c}-\frac{R_{2}}{R_{2}+R_{5}}\right)}{1+R_{b} \times\left(g_{m 1} \times R_{3} \times g_{m 2} \times R_{4} \times G_{1} \times R_{c}-\frac{R_{2}}{R_{2}+R_{5}}\right) \times \frac{1}{R_{2}}} \\
= & \frac{-R_{b} \times\left(g_{m 1} \times R_{3} \times g_{m 2} \times R_{4} \times G_{1} \times R_{c}-\frac{R_{2}}{R_{2}+R_{5}}\right)}{1+\left[-R_{b} \times\left(g_{m 1} \times R_{3} \times g_{m 2} \times R_{4} \times G_{1} \times R_{c}-\frac{R_{2}}{R_{2}+R_{5}}-\frac{R_{2}}{R_{2}+R_{5}}\right)\right] \times \frac{-1}{R_{2}}}
\end{aligned}
$$

This is of the form

$$
\frac{i_{e 2}}{v_{1}}=\frac{A}{1+A b}
$$

where A and b are given by

$$
\begin{aligned}
A & =-R_{b} \times\left(g_{m 1} \times R_{3} \times g_{m 2} \times R_{4} \times G_{1} \times R_{c}-\frac{R_{2}}{R_{2}+R_{5}}\right) \\
& =-R_{1}\left\|R_{2}\right\| r_{e 1} \times\left(g_{m 1} \times R_{3} \times g_{m 2} \times R_{4} \times \frac{1}{r_{e 2}^{\prime}+R_{2} \| R_{5}} \times R_{2} \| R_{5}-\frac{R_{5}}{R_{2}+R_{5}}\right) \\
& =-11.2 \mathrm{M} \Omega
\end{aligned}
$$

$$
b=\frac{-1}{R_{2}}=-10 \mu \mathrm{~S}
$$

Notice that the product $A b$ is dimensionless and positive. The latter must be true for the feedback to be negative.

Numerical evaluation of the transresistance gain yields

$$
\frac{v_{2}}{i_{1}}=\frac{A}{\Delta}=-99.11 \mathrm{k} \Omega
$$

The resistances R_{a} and R_{A} are

$$
\begin{gathered}
R_{a}=\frac{v_{e 1}}{i_{1}}=\frac{R_{b}}{\Delta}=0.214 \Omega \\
R_{A}=R_{1}+\left(\frac{1}{R_{a}}-\frac{1}{R_{1}}\right)^{-1}=1 \mathrm{k} \Omega
\end{gathered}
$$

The resistance R_{B} is

$$
R_{B}=\frac{v_{2}}{i_{t}}=\frac{R_{c}}{\Delta}=80.49 \Omega
$$

The voltage gain is

$$
\frac{v_{2}}{v_{e 1}}=\frac{v_{2}}{i_{1}} \times\left(\frac{v_{e 1}}{i_{1}}\right)^{-1}=\left(\frac{A}{\Delta}\right) \times \frac{1}{R_{A}}=-99.09
$$

Series-Series Example 1

Figure 20(a) shows the ac signal circuit of a series-series feedback amplifier. The input variable is v_{1} and the output variable is $i_{d 2}$. The input signal is applied to the gate of M_{1} and the feedback signal is applied to the source of M_{1}. Fig. 20(b) shows the circuit with feedback removed. A test voltage source v_{t} is added in series with the output to calculate the output resistance R_{b}. The feedback at the source of M_{1} is modeled by a Thévenin equivalent circuit. The feedback factor or feedback ratio b is the coefficient of $i_{d 2}$ in this source, i.e. $b=R_{5}$. The circuit values are $g_{m}=0.001 \mathrm{~S}, r_{s}=g_{m}^{-1}=1 \mathrm{k} \Omega, r_{0}=\infty, R_{1}=50 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega$, $R_{3}=1 \mathrm{k} \Omega, R_{4}=9 \mathrm{k} \Omega$, and $R_{5}=1 \mathrm{k} \Omega$.

Figure 20: (a) Amplifier circuit. (b) Circuit with feedback removed.

The following equations can be written for the circuit with feedback removed:

$$
\begin{array}{clll}
i_{d 1}=G_{m 1} v_{a} & G_{m 1}=\frac{1}{r_{s 1}+R_{5}} & v_{a}=v_{1}-v_{t s 1} & v_{t s 1}=i_{d 2} R_{5} \\
i_{d 2}=G_{m 2} v_{b} & G_{m 2}=\frac{1}{r_{s 2}+R_{3}} & v_{b}=v_{t}-v_{t g 2} & v_{t g 2}=-i_{d 1} R_{2}
\end{array}
$$

The voltage v_{a} is the error voltage. The negative feedback tends to reduce v_{a}, making $\left|v_{a}\right| \rightarrow 0$ as the amount of feedback becomes infinite. When this is the case, setting $v_{a}=0$ yields the transconductance gain $i_{d 2} / v_{1}=b^{-1}=R_{5}^{-1}$. Although the equations can be solved algebraically, the signal-flow graph simplifies the solution.

Figure 21 shows the signal-flow graph for the equations. The determinant of the graph is given by

$$
\Delta=1-G_{m 1} \times\left(-R_{2}\right) \times(-1) \times G_{m 2} \times R_{5} \times(-1)
$$

Figure 21: Flow graph for the equations.
The transconductance gain $i_{d 2} / v_{1}$ is calculated with $v_{t}=0$. It is given by

$$
\begin{aligned}
\frac{i_{d 2}}{v_{1}} & =\frac{G_{m 1} \times\left(-R_{2}\right) \times(-1) \times G_{m 2}}{\Delta} \\
& =\frac{\frac{1}{r_{s 1}+R_{5}} \times R_{2} \times \frac{1}{r_{s 1}+R_{5}}}{1+\frac{1}{r_{s 1}+R_{5}} \times R_{2} \times \frac{1}{r_{s 1}+R_{5}} \times R_{5}}
\end{aligned}
$$

This is of the form

$$
\frac{i_{d 2}}{v_{1}}=\frac{A}{1+A b}
$$

where

$$
\begin{gathered}
A=G_{m 1} \times\left(-R_{2}\right) \times(-1) \times G_{m 2}=\frac{1}{r_{s 1}+R_{5}} \times R_{2} \times \frac{1}{r_{s 2}+R_{3}}=2.5 \times 10^{-3} \mathrm{~S} \\
b=R_{5}=1000 \Omega
\end{gathered}
$$

Note that $b A$ is dimensionless. Numerical evaluation yields

$$
\frac{i_{d 2}}{v_{1}}=\frac{2.5 \times 10^{-3}}{1+1000 \times 2.5 \times 10^{-3}}=7.124 \times 10^{-4} \mathrm{~S}
$$

The resistance R_{b} is calculated with $v_{1}=0$. It is given by

$$
R_{b}=\left(\frac{i_{d 2}}{v_{t}}\right)^{-1}=\left(\frac{G_{m 2}}{\Delta}\right)^{-1}=(1+b A)\left(r_{s 2}+R_{3}\right)=7 \mathrm{k} \Omega
$$

Note that the feedback tends to increase R_{b}. The resistance R_{B} is calculated as follows:

$$
R_{B}=\left(R_{b}-R_{3}\right) \| R_{3}=857.1 \Omega
$$

Because the gate current of M_{1} is zero, the input resistance is $R_{A}=R_{1}=50 \mathrm{k} \Omega$.

Series-Series Example 2

A series-series feedback BJT amplifier is shown in Fig. 22. The input variable is the voltage v_{1} and the output variable is the voltage v_{2}. The feedback is from $i_{e 2}$ to the emitter of Q_{1}. Because the feedback does not connect to the input node, the input summing is series. The output sampling is series because the feedback is proportional to the current that flows in series with the output rather than the output voltage. Solve for the transconductance gain $i_{c 3} / v_{1}$, the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. Assume $\beta=100, I_{C 1}=0.6 \mathrm{~mA}, I_{C 2}=1 \mathrm{~mA}, I_{C 3}=4 \mathrm{~mA}, \alpha=\beta /(1+\beta), g_{m}=I_{C} / V_{T}$, $r_{e}=\alpha V_{T} / I_{C}, r_{0}=\infty, r_{x}=0, V_{T}=25 \mathrm{mV}, R_{1}=100 \Omega, R_{2}=9 \mathrm{k} \Omega, R_{3}=5 \mathrm{k} \Omega, R_{4}=600 \Omega, R_{5}=640 \Omega$, and $R_{6}=100 \Omega$. The circuit with feedback removed is shown in Fig. 23.

Figure 22: Amplifier circuit.
The circuit looking out of the emitter of Q_{1} is a Thévenin equivalent made with respect to the current $i_{e 3}$. The output current is proportional to this current, i.e. $i_{c 3}=\alpha i_{e 3}$. Because $r_{0}=\infty$ for Q_{3}, the feedback does not affect the output resistance seen looking down through R_{4} because it is infinite. For a finite r_{0}, a test voltage source can be added in series with R_{4} to solve for this resistance. It would be found that a finite r_{0} for Q_{3} considerably complicates the circuit equations and the flow graph.

Figure 23: Circuit with feedback removed.

For the circuit with feedback removed, we can write

$$
\begin{gathered}
v_{e}=v_{1}-i_{e 3} \frac{R_{6} R_{1}}{R_{6}+R_{5}+R_{1}} \quad i_{e 1}=G_{1} v_{e} \quad G_{1}=\frac{1}{r_{e 1}+R_{1} \|\left(R_{5}+R_{6}\right)} \quad i_{c 1}=\alpha i_{e 1} \\
i_{b 1}=\frac{i_{c 1}}{\beta} \quad v_{t b 2}=-i_{c 1} R_{2} \quad i_{e 2}=G_{2} v_{t b 2} \quad G_{2}=\frac{1}{r_{e 2}^{\prime}} \quad r_{e 2}^{\prime}=\frac{R_{2}}{1+\beta}+r_{e} \\
i_{c 2}=\alpha i_{e 2} \quad v_{t b 3}=-i_{c 2} R_{3} \quad i_{e 3}=G_{3} v_{t b 3}-k_{1} i_{e 1} \quad G_{3}=\frac{1}{r_{e 3}^{\prime}+R_{6} \|\left(R_{1}+R_{5}\right)} \\
k_{1}=\frac{R_{1}}{R_{1}+R_{5}+r_{e 3}^{\prime} \| R_{6}} \frac{R_{6}}{R_{6}+r_{e 3}^{\prime}} \quad i_{c 3}=\alpha i_{e 3} \quad v_{2}=-i_{c 2} R_{4}
\end{gathered}
$$

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 24. The determinant is

$$
\begin{aligned}
\Delta & =1-\left\{G_{1} \times\left[\left(\alpha \times-R_{2} \times G_{2} \times \alpha \times-R_{3} \times G_{3}\right)-k_{1}\right] \times \frac{-R_{6} R_{1}}{R_{6}+R_{5}+R_{1}}\right\} \\
& =1+G_{1} \times\left(\alpha \times R_{2} \times G_{2} \times \alpha \times R_{a}-k_{1}\right) \times \frac{R_{6} R_{1}}{R_{6}+R_{5}+R_{1}} \\
& =251.5
\end{aligned}
$$

Figure 24: Signal-flow graph for the circuit.
The transconductance gain is

$$
\begin{aligned}
\frac{i_{c 3}}{v_{1}} & =\frac{G_{1} \times\left(\alpha \times-R_{2} \times G_{2} \times \alpha \times-R_{3} \times G_{3}-k_{1}\right) \times \alpha}{\Delta} \\
& =\frac{G_{1} \times\left(\alpha \times R_{2} \times G_{2} \times \alpha \times R_{3} \times G_{3}-k_{1}\right) \times \alpha}{1+\left[G_{1} \times\left(\alpha \times R_{2} \times G_{2} \times \alpha \times R_{a}-k_{1}\right)\right] \times \frac{R_{6} R_{1}}{R_{6}+R_{5}+R_{1}}} \\
& =\frac{G_{1} \times\left[\left(\alpha \times R_{2} \times G_{2} \times \alpha \times R_{3} \times G_{3}\right)-k_{1}\right] \times \alpha}{1+\left[G_{1} \times\left(\alpha \times R_{2} \times G_{2} \times \alpha \times R_{a}-k_{1}\right) \times \alpha\right] \times \frac{R_{6} R_{1}}{R_{6}+R_{5}+R_{1}} \times \frac{1}{\alpha}}
\end{aligned}
$$

This is of the form

$$
\frac{i_{c 3}}{v_{1}}=\frac{A}{1+A b}
$$

where A and b are given by

$$
\begin{aligned}
A= & G_{1} \times\left[\left(\alpha \times R_{2} \times G_{2} \times \alpha \times R_{3} \times G_{3}\right)-k_{1}\right] \times \alpha \\
= & \frac{1}{r_{e 1}+R_{1} \|\left(R_{5}+R_{6}\right)} \times\left[\left(\alpha \times R_{2} \times \frac{1}{r_{e 2}^{\prime}} \times \alpha \times R_{3} \times \frac{1}{r_{e 3}^{\prime}+R_{6} \|\left(R_{1}+R_{5}\right)} \times \alpha\right)\right. \\
& \left.-\frac{R_{1}}{R_{1}+R_{5}+r_{e 3}^{\prime} \| R_{6}} \frac{R_{6}}{R_{6}+r_{e 3}^{\prime}}\right] \times \alpha \\
= & 20.83 \mathrm{~S}
\end{aligned}
$$

$$
b=\frac{R_{6} R_{1}}{R_{6}+R_{5}+R_{1}} \times \frac{1}{\alpha}=12.02 \Omega
$$

Notice that the product $A b$ is dimensionless and positive. The latter must be true for the feedback to be negative.

Numerical evaluation of the transconductance gain yields

$$
\frac{i_{c 3}}{v_{1}}=\frac{A}{\Delta}=0.083
$$

The voltage gain is given by

$$
\frac{v_{2}}{v_{1}}=\frac{i_{c 3}}{v_{1}} \times \frac{v_{2}}{i_{c 3}}=\frac{A}{\Delta} \times-R_{4}=-49.7
$$

The resistances R_{A} and R_{B} are given by

$$
\begin{gathered}
R_{A}=\left(\frac{i_{b 1}}{v_{1}}\right)^{-1}=\left(\frac{G_{1} \alpha / \beta}{\Delta}\right)^{-1}=\frac{\Delta \times(1+\beta)}{G_{1}}=\Delta \times(1+\beta) \times\left[r_{e 1}+R_{1} \|\left(R_{5}+R_{6}\right)\right]=3.285 \mathrm{M} \Omega \\
R_{B}=R_{4}=600 \Omega
\end{gathered}
$$

Series-Series Example 3

A series-series feedback BJT amplifier is shown in Fig. 25(a). The input variable is the voltage v_{1} and the output variable is the voltage v_{2}. The feedback is from $i_{e 2}$ to $i_{c 2}$ to the emitter of Q_{1}. Because the feedback does not connect to the input node, the input summing is series. Because the feedback does not sample the output voltage, the sampling is series. That is, the feedback network samples the current in series with the outpu. Solve for the transconductance gain $i_{e 2} / v_{1}$, the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. Assume $\beta=100, r_{\pi}=2.5 \mathrm{k} \Omega, \alpha=\beta /(1+\beta), r_{e}=\alpha / g_{m}, r_{0}=\infty, r_{x}=0$, $V_{T}=25 \mathrm{mV}, R_{1}=100 \Omega, R_{2}=1 \mathrm{k} \Omega, R_{3}=20 \mathrm{k} \Omega$, and $R_{4}=10 \mathrm{k} \Omega$.

Figure 25: (a) Amplifier circuit. (b) Circuit with feedback removed.
The circuit with feedback removed is shown in Fig. 25(b). The circuit seen looking out of the emitter of Q_{1} is replaced with a Thévenin equivalent circuit made with respect with $i_{c 2}$. The output current $i_{e 2}$ is proportional to this current, i.e. $i_{e 2}=\alpha i_{c 2}$. A test voltage source v_{t} is added in series with the output to solve for the output resistance. The resistance seen by the test source is labeled R_{b}.

For the circuit with feedback removed, we can write

$$
v_{e}=v_{1}-i_{c 2} R_{2} \quad i_{e 1}=G_{1} v_{e} \quad G_{1}=\frac{1}{r_{e}+R_{1}+R_{2}} \quad i_{c 1}=\alpha i_{e 1} \quad i_{b 1}=\frac{i_{c 1}}{\beta}
$$

$$
v_{t b 2}=-i_{c 1} R_{3} \quad i_{e 2}=G_{2}\left(v_{t}-v_{t b 2}\right) \quad G_{2}=\frac{1}{r_{e 2}^{\prime}+R_{4}} \quad r_{e 2}^{\prime}=\frac{R_{3}}{1+\beta}+r_{e} \quad i_{c 2}=\alpha i_{e 2}
$$

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 26. The determinant is

$$
\begin{aligned}
\Delta & =1-\left(G_{1} \times \alpha \times-R_{3} \times-G_{2} \times \alpha \times-R_{2}\right) \\
& =1+G_{1} \times \alpha \times R_{2} \times G_{2} \times \alpha \times R_{2} \\
& =1.181
\end{aligned}
$$

Figure 26: Signal-flow graph for the equations.
The transconductance gain is

$$
\begin{aligned}
\frac{i_{e 2}}{v_{1}} & =\frac{G_{1} \times \alpha \times-R_{3} \times-G_{2}}{\Delta} \\
& =\frac{\left(G_{1} \times \alpha \times R_{3} \times G_{2}\right)}{1+\left(G_{1} \times \alpha \times R_{3} \times G_{2}\right) \times \alpha \times R_{2}}
\end{aligned}
$$

This is of the form

$$
\frac{i_{e 2}}{v_{1}}=\frac{A}{1+A b}
$$

where A and b are given by

$$
\begin{aligned}
A & =G_{1} \times \alpha \times R_{3} \times G_{2} \\
& =\frac{1}{r_{e 1}+R_{1}+R_{2}} \times \alpha \times R_{3} \times \frac{1}{r_{e 2}^{\prime}+R_{4}} \\
= & 0.9117 \mathrm{mS} \\
& \quad b=\alpha R_{2}=1.98 \mathrm{k} \Omega
\end{aligned}
$$

Notice that the product $A b$ is dimensionless and positive. The latter must be true for the feedback to be negative.

Numerical evaluation of the transconductance gain yields

$$
\frac{i_{e 2}}{v_{1}}=\frac{A}{\Delta}=0.325 \mathrm{mS}
$$

The voltage gain is given by

$$
\frac{v_{2}}{v_{1}}=\frac{i_{e 2}}{v_{1}} \times \frac{v_{2}}{i_{e 2}}=\frac{A}{\Delta} \times-R_{4}=-3.25
$$

The resistances R_{A} and R_{B} are given by

$$
\begin{gathered}
R_{A}=\left(\frac{i_{b 1}}{v_{1}}\right)^{-1}=\left(\frac{G_{1} \alpha / \beta}{\Delta}\right)^{-1}=\Delta \times(1+\beta)\left(r_{e}+R_{1}+R_{2}\right)=602 \mathrm{k} \Omega \\
R_{b}=\left(\frac{i_{e 2}}{v_{t}}\right)^{-1}=\left(\frac{G_{m 2}}{\Delta}\right)^{-1}=\Delta \times\left(R_{4}+r_{e 2}^{\prime}\right)=28.68 \mathrm{k} \Omega \\
R_{B}=\left(R_{b}-R_{4}\right) \| R_{4}=6.513 \mathrm{k} \Omega
\end{gathered}
$$

Series-Series Example 4

A series-series feedback BJT amplifier is shown in Fig. 27(a). The input variable is the voltage v_{1} and the output variable is the current $i_{c 2}$. The feedback is from $i_{c 2}$ to $i_{e 2}$ to the gate of J_{1}. The input summing is series because the feedback does not connect to the same node that the source connects. The output sampling is series because the feedback is proportional to the output current $i_{c 2}$. Solve for the transconductance gain $i_{c 2} / v_{1}$, the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. For J_{1}, assume that $g_{m 1}=0.001 \mathrm{~S}, r_{s 1}=g_{m 1}^{-1}=1000 \Omega$, and $r_{01}=\infty$. For Q_{2}, assume $\beta_{2}=100, r_{\pi 2}=2.5 \mathrm{k} \Omega, \alpha_{2}=\beta_{2} /\left(1+\beta_{2}\right)$, $r_{e 2}=\alpha_{2} / g_{m 2}, r_{02}=\infty, r_{x 2}=0, V_{T}=25 \mathrm{mV}$. The resistor values are $R_{1}=1 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{3}=1 \mathrm{k} \Omega$, $R_{4}=10 \mathrm{k} \Omega, R_{5}=1 \mathrm{k} \Omega$, and $R_{6}=10 \mathrm{k} \Omega$.

Figure 27: (a) Amplifier circuit. (b) Circuit with feedback removed.
The circuit with feedback removed is shown in Fig. 27(b). The circuit seen looking out of the emitter of Q_{1} is replaced with a Thévenin equivalent circuit made with respect with $i_{e 2}$. The output current is proportional to this current, i.e. $i_{c 2}=\alpha_{2} i_{e 2}$. Because $r_{02}=\infty$, the feedback does not affect the output resistance seen looking down through R_{6} because it is infinite. For a finite r_{02}, a test voltage source can be added in series with R_{6} to solve for this resistance. It would be found that a finite r_{02} considerably complicates the circuit equations and the flow graph.

For the circuit with feedback removed, we can write

$$
\begin{gathered}
i_{d 1}=g_{m 1} v_{e} \quad v_{e}=i_{e 2} \frac{R_{5} R_{3}}{R_{3}+R_{4}+R_{5}}-v_{1} \quad v_{t b 2}=-i_{d 1} R_{2} \quad i_{e 2}=G_{1} v_{t b 2} \\
G_{1}=\frac{1}{r_{e 2}^{\prime}+R_{5} \|\left(R_{3}+R_{4}\right)} \quad r_{e 2}^{\prime}=\frac{R_{2}}{1+\beta_{2}}+r_{e 2} \quad i_{c 2}=\alpha_{2} i_{e 2}
\end{gathered}
$$

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 28. The determinant is

$$
\begin{aligned}
\Delta & =1-\left(g_{m 1} \times-R_{2} \times G_{1} \times \frac{R_{5} R_{3}}{R_{3}+R_{4}+R_{5}}\right) \\
& =1+g_{m 1} \times R_{2} \times G_{1} \times \frac{R_{5} R_{3}}{R_{3}+R_{4}+R_{5}} \\
& =1.801
\end{aligned}
$$

Figure 28: Signal-flow graph for the equations.

The transconductance gain is

$$
\begin{aligned}
\frac{i_{e 2}}{v_{1}} & =\frac{-1 \times g_{m 1} \times-R_{2} \times G_{1} \times \alpha_{2}}{\Delta} \\
& =\frac{g_{m 1} \times R_{2} \times G_{1} \times \alpha_{2}}{1+g_{m 1} \times R_{2} \times G_{1} \times \frac{R_{5} R_{3}}{R_{3}+R_{4}+R_{5}}} \\
& =\frac{\left(g_{m 1} \times R_{2} \times G_{1} \times \alpha_{2}\right)}{1+\left(g_{m 1} \times R_{2} \times G_{1} \times \alpha_{2}\right) \times \frac{R_{5} R_{3}}{R_{3}+R_{4}+R_{5}} \times \frac{1}{\alpha_{2}}}
\end{aligned}
$$

This is of the form

$$
\frac{i_{e 2}}{v_{1}}=\frac{A}{1+A b}
$$

where A and b are given by

$$
\begin{aligned}
A= & g_{m 1} \times R_{2} \times G_{1} \times \alpha_{2} \\
= & g_{m 1} \times R_{2} \times \frac{1}{r_{e 2}^{\prime}+R_{5} \|\left(R_{3}+R_{4}\right)} \times \alpha_{2} \\
= & 9.516 \mathrm{mS} \\
& b=\frac{R_{5} R_{3}}{R_{3}+R_{4}+R_{5}} \times \frac{1}{\alpha_{2}}=84.17 \Omega
\end{aligned}
$$

Notice that the product $A b$ is dimensionless and positive. The latter must be true for the feedback to be negative.

Numerical evaluation of the transconductance gain yields

$$
\frac{i_{c 2}}{v_{1}}=\frac{A}{\Delta}=5.284 \mathrm{mS}
$$

The voltage gain is given by

$$
\frac{v_{2}}{v_{1}}=\frac{i_{c 2}}{v_{1}} \times \frac{v_{2}}{i_{c 2}}=\frac{A}{\Delta} \times-R_{6}=-52.84
$$

The resistances R_{A} and R_{B} are given by

$$
\begin{gathered}
R_{A}=R_{1}\left\|\left(\frac{-i_{d 1}}{v_{1}}\right)^{-1}=R_{1}\right\|\left(\frac{g_{m 1}}{\Delta}\right)^{-1}=R_{1} \|\left(\frac{\Delta}{g_{m 1}}\right)=643 \Omega \\
R_{B}=R_{6}=10 \mathrm{k} \Omega
\end{gathered}
$$

Series-Series Example 5

A series-series feedback BJT amplifier is shown in Fig. 29. The input variable is the current i_{1} and the output variable is the current $i_{e 2}$. The feedback path is the path from $i_{e 2}$ to $i_{c 2}$ to $i_{e 3}$ to $i_{c 3}$ to the emitter of Q_{1}. The input summing is series because the feedback does not connect to the input node. The output
sampling is series because the feedback is proportional to the output current $i_{e 2}$ and not the output voltage v_{2}. Solve for the current gain gain $i_{e 2} / i_{1}$, the transresistance gain v_{2} / i_{1}, the input resistance R_{A}, and the output resistance R_{B}. Assume $\beta=100, r_{\pi}=2.5 \mathrm{k} \Omega, g_{m}=\beta / r_{\pi}, \alpha=\beta /(1+\beta), r_{e}=\alpha / g_{m}, r_{0}=\infty$, $r_{x}=0, V_{T}=25 \mathrm{mV}$. The resistor values are $R_{1}=1 \mathrm{k} \Omega, R_{2}=100 \Omega, R_{3}=10 \mathrm{k} \Omega, R_{4}=100 \Omega, R_{5}=1 \mathrm{k} \Omega$, and $R_{6}=10 \mathrm{k} \Omega$.

Figure 29: Amplifier circuit.
The circuit with feedback removed is shown in Fig. 30. The source is replaced with a Thevenin equivalent circuit consisting of a voltage

$$
v_{1}=i_{1} R_{1}
$$

in series with the resistor R_{1}. This is necessary for the feedback analysis to conform to convention for series summing at the input. The circuit seen looking out of the emitter of Q_{1} is replaced with a Thévenin equivalent circuit made with respect with $i_{c 3}$. The latter is proportional to the output current $i_{e 2}$. The relation is

$$
\frac{i_{c 3}}{i_{e 2}}=\frac{i_{c 3}}{i_{e 3}} \times \frac{i_{e 3}}{i_{c 2}} \times \frac{i_{c 2}}{i_{e 2}}=\alpha \times \frac{R_{3}}{R_{3}+R_{4}+r_{e 3}} \times \alpha
$$

Note that $r_{e 3}$ in this equation is the small-signal resistance seen looking into the emitter of Q_{3}.

Figure 30: Circuit with feedback removed.

For the circuit with feedback removed, we can write

$$
\begin{aligned}
& v_{e}=v_{1}-i_{c 3} R_{2} \quad i_{e 1}=G_{1} v_{e} \quad G_{1}=\frac{1}{r_{e 1}^{\prime}+R_{2}} \quad r_{e 1}^{\prime}=\frac{R_{1}}{1+\beta}+r_{e} \quad i_{c 1}=\alpha i_{e 1} \quad i_{b 1}=\frac{i_{c 1}}{\beta} \\
& v_{t b 2}=-i_{c 1} R_{6} \quad i_{e 2}=G_{2}\left(v_{t}-v_{t b 2}\right) \quad G_{2}=\frac{1}{r_{e 2}^{\prime}+R_{5}} \quad r_{e 2}^{\prime}=\frac{R_{6}}{1+\beta}+r_{e} \\
& i_{c 2}=\alpha i_{e 2} \quad i_{e 3}=i_{c 2} \frac{R_{3}}{R_{3}+R_{4}+r_{e}} \quad i_{c 3}=\alpha i_{e 3}
\end{aligned}
$$

Figure 31: Signal-flow graph for the equations.
The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 31. The determinant is

$$
\begin{aligned}
\Delta & =1-G_{1} \times \alpha \times-R_{6} \times-G_{2} \times \alpha \times \frac{R_{3}}{R_{3}+R_{4}+r_{e}} \times \alpha \times R_{2} \\
& =1+G_{1} \times \alpha \times R_{6} \times G_{2} \times \alpha \times \frac{R_{3}}{R_{3}+R_{4}+r_{e}} \times \alpha \times R_{2} \\
& =7.335
\end{aligned}
$$

The transconductance gain is

$$
\begin{aligned}
\frac{i_{e 2}}{v_{1}} & =\frac{1 \times G_{1} \times \alpha \times-R_{6} \times-G_{2}}{\Delta} \\
& =\frac{G_{1} \times \alpha \times R_{6} \times G_{2}}{1+G_{1} \times \alpha \times R_{6} \times G_{2} \times \alpha \times \frac{R_{3}}{R_{3}+R_{4}+r_{e}} \times \alpha \times R_{2}}
\end{aligned}
$$

This is of the form

$$
\frac{i_{e 2}}{v_{1}}=\frac{A}{1+A b}
$$

where A and b are given by

$$
\begin{aligned}
A & =G_{1} \times \alpha \times R_{6} \times G_{2} \\
& =\frac{1}{r_{e 1}^{\prime}+R_{2}} \times \alpha \times R_{6} \times \frac{1}{r_{e 2}^{\prime}+R_{5}} \\
& =65.43 \mathrm{mS} \\
b=\alpha & \times \frac{R_{3}}{R_{3}+R_{4}+r_{e}} \times \alpha \times R_{2}=96.82 \Omega
\end{aligned}
$$

Notice that the product $A b$ is dimensionless and positive. The latter must be true for the feedback to be negative.

Numerical evaluation of the transconductance gain yields

$$
\frac{i_{e 2}}{v_{1}}=\frac{A}{\Delta}=8.92 \mathrm{mS}
$$

The current gain is given by

$$
\frac{i_{e 2}}{i_{1}}=\frac{i_{e 2}}{v_{1}} \times \frac{v_{1}}{i_{1}}=\frac{A}{\Delta} \times R_{1}=8.92
$$

The transresistance gain is

$$
R_{m}=\frac{v_{2}}{i_{1}}=\frac{i_{e 2}}{i_{1}} \times \frac{v_{2}}{i_{e 2}}=\frac{A}{\Delta} \times R_{1} \times-R_{5}=-8.92 \mathrm{k} \Omega
$$

The resistances R_{a} and R_{A}

$$
\begin{gathered}
R_{a}=\left(\frac{i_{b 1}}{v_{1}}\right)^{-1}=\left(\frac{G_{1} \alpha / \beta}{\Delta}\right)^{-1}=\Delta \times\left[R_{1}+r_{\pi}+(1+\beta) R_{2}\right]=113.3 \mathrm{k} \Omega \\
R_{A}=\frac{v_{b 1}}{i_{1}}=\left(R_{a}-R_{1}\right) \| R_{1}=991.2 \Omega
\end{gathered}
$$

The voltage gain is

$$
\frac{v_{2}}{v_{b 1}}=\frac{v_{2}}{i_{1}} \times\left(\frac{v_{b 1}}{i_{1}}\right)^{-1}=\left(\frac{A}{\Delta} \times R_{1}\right) \times \frac{1}{R_{A}}=-990
$$

The resistances R_{b} and R_{B} are

$$
\begin{gathered}
R_{b}=\left(\frac{i_{e 2}}{v_{t}}\right)^{-1}=\left(\frac{G_{2}}{\Delta}\right)^{-1}=\Delta \times\left(r_{e 2}^{\prime}+R_{5}\right)=10.98 \mathrm{k} \Omega \\
R_{B}=\left(R_{b}-R_{5}\right) \| R_{5}=889.5 \Omega
\end{gathered}
$$

Shunt-Series Example 1

Figure 32 (a) shows the ac signal circuit of a shunt-series feedback amplifier. The input variable is v_{1} and the output variable is $i_{d 2}$. The input signal and the feedback signal are applied to the source of M_{1}. A test voltage source v_{t} is added in series with the output to calculate the output resistance R_{b}. For the analysis to follow convention, the input source consisting of v_{1} in series with R_{1} must be converted into a Norton equivalent. This circuit is the current

$$
i_{1}=\frac{v_{1}}{R_{1}}
$$

in parallel with the resistor R_{1}. Fig. 32(b) shows the circuit with feedback removed and the source replaced with the Norton equivalent. A test source v_{t} is added in series with the output to calculate the resistance R_{b}. The feedback at the source of M_{1} is modeled by a Norton equivalent circuit $i_{d 2}$ in parallel with the resistor R_{4}. The feedback is from the output current $i_{d 2}$ to the source of M_{1}. The circuit values are $g_{m}=0.001 \mathrm{~S}$, $r_{s}=g_{m}^{-1}=1 \mathrm{k} \Omega, r_{0}=\infty, R_{1}=10 \mathrm{k} \Omega, R_{2}=20 \mathrm{k} \Omega, R_{3}=1 \mathrm{k} \Omega, R_{4}=1 \mathrm{k} \Omega$, and $R_{5}=1 \mathrm{k} \Omega$.

The following equations can be written for the circuit with feedback removed:

$$
\begin{array}{ccc}
v_{s 1}=i_{a} R_{c} & i_{a}=i_{1}+i_{d 2} & R_{c}=R_{1}\left\|R_{4}\right\| r_{s 1}
\end{array} i_{d 1}=-g_{m 1} v_{s 1}, ~ v_{m 2} v_{b} \quad G_{m 2}=\frac{1}{r_{s 2}+R_{3}} \quad v_{b}=v_{t}-v_{t g 2} \quad v_{t g 2}=-i_{d 1} R_{2} .
$$

The current i_{a} is the error current. The negative feedback tends to reduce i_{a}, making $\left|i_{a}\right| \rightarrow 0$ as the amount of feedback becomes infinite. When this is the case, setting $i_{a}=0$ yields the current gain $i_{d 2} / i_{1}=-1$.

Although the equations can be solved algebraically, the signal-flow graph simplifies the solution. Fig. 33 shows the flow graph for the equations. The determinant of the graph is given by

$$
\Delta=1-R_{c} \times\left(-g_{m 1}\right) \times\left(-R_{2}\right) \times(-1) \times G_{m 2} \times 1
$$

The current gain is calculated with $v_{t}=0$. It is given by

$$
\begin{aligned}
\frac{i_{d 2}}{i_{1}} & =\frac{R_{c} \times\left(-g_{m 1}\right) \times\left(-R_{2}\right) \times(-1) \times G_{m 2}}{\Delta} \\
& =-\frac{R_{1}\left\|R_{4}\right\| r_{s 1} \times g_{m 1} \times R_{2} \times \frac{1}{r_{s 2}+R_{3}}}{1+R_{c} \times g_{m 1} \times R_{2} \times \frac{1}{r_{s 2}+R_{3}} \times 1}
\end{aligned}
$$

Figure 32: (a) Amplifier circuit. (b) Circuit with feedback removed.

Figure 33: Flow graph for the equations.

This is of the form

$$
\frac{i_{d 2}}{i_{1}}=\frac{A}{1+A b}
$$

where

$$
\begin{gathered}
A=R_{c} \times\left(-g_{m 1}\right) \times\left(-R_{2}\right) \times(-1) \times G_{m 2}=-\left(R_{1}\left\|R_{4}\right\| r_{s 1}\right) \times g_{m 1} \times R_{2} \times \frac{1}{r_{s 2}+R_{3}}=-0.3333 \\
b=-1
\end{gathered}
$$

Note that $A b$ is dimensionless. Numerical evaluation yields

$$
\frac{i_{d 2}}{i_{1}}=\frac{2.5 \times 10^{-3}}{1+1000 \times 2.5 \times 10^{-3}}=-0.7692
$$

The voltage gain is given by

$$
\frac{v_{2}}{v_{1}}=\frac{i_{d 2}}{i_{1}} \times \frac{i_{1}}{v_{1}} \times \frac{v_{2}}{i_{d 2}}=\frac{i_{d 2}}{i_{1}} \times \frac{1}{R_{1}} \times\left(-R_{3}\right)=0.7692
$$

The resistance R_{a} is calculated with $v_{t}=0$. It is given by

$$
R_{a}=\frac{v_{s 1}}{i_{1}}=\frac{R_{c}}{\Delta}=\frac{R_{1}\left\|R_{4}\right\| r_{s 1}}{1+1 \times R_{c} \times g_{m 1} \times R_{2} \times \frac{1}{r_{s 2}+R_{3}}}=76.92 \Omega
$$

Note that the feedback tends to decrease R_{a}. The resistance R_{A} is calculated as follows:

$$
R_{A}=R_{1}+\left(R_{a}^{-1}-R_{1}^{-1}\right)^{-1}=1.083 \mathrm{k} \Omega
$$

The resistance R_{b} is calculated with $i_{1}=0$. It is given by

$$
R_{b}=\left(\frac{i_{d 2}}{v_{t}}\right)^{-1}=\left(\frac{G_{m 2}}{\Delta}\right)^{-1}=(1+A b)\left(r_{s 2}+R_{3}\right)=8.667 \mathrm{k} \Omega
$$

Note that the feedback tends to increase R_{b}. The resistance R_{B} is calculated as follows:

$$
R_{B}=\left(R_{b}-R_{3}\right) \| R_{3}=884.6 \Omega
$$

Shunt-Series Example 2

A shunt-series feedback BJT amplifier is shown in Fig. 34(a). The input variable is the voltage v_{1} and the output variable is the current $i_{e 2}$. The feedback is from $i_{e 2}$ to $i_{c 2}$ to the source of M_{1}. The input summing is shunt because the feedback connects to the same node that the source connects. The output sampling is series because the feedback is proportional to the output current $i_{e 2}$. Solve for the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. For M_{1}, assume that $g_{m 1}=0.001 \mathrm{~S}, r_{s 1}=g_{m 1}^{-1}=1000 \Omega$, and $r_{01}=\infty$. For Q_{2}, assume $\beta_{2}=100, r_{\pi 2}=2.5 \mathrm{k} \Omega, \alpha_{2}=\beta_{2} /\left(1+\beta_{2}\right), r_{e 2}=\alpha_{2} / g_{m 2}, r_{02}=\infty, r_{x 2}=0$, $V_{T}=25 \mathrm{mV}$. The resistor values are $R_{1}=10 \mathrm{k} \Omega, R_{2}=100 \mathrm{k} \Omega, R_{3}=100 \mathrm{k} \Omega, R_{4}=10 \mathrm{k} \Omega$, and $R_{5}=1 \mathrm{k} \Omega$. The circuit with feedback removed is shown in Fig. 34(b). The source is replaced with a Norton equivalent circuit. The current i_{1} is given by

$$
i_{1}=\frac{v_{1}}{R_{1}}
$$

The circuit seen looking into R_{2} from the $v_{s 1}$ node is replaced with a Norton equivalent circuit made with respect with $i_{c 2}$. The output current is proportional to this current, i.e. $i_{c 2}=\alpha_{2} i_{e 2}$. A test voltage source v_{t} is added in series with $i_{e 2}$ to calculate the resistance R_{b}.

For the circuit with feedback removed, we can write

$$
v_{s 1}=i_{a} R_{c} \quad i_{a}=i_{1}-\frac{R_{4}}{R_{2}+R_{4}} i_{c 2} \quad R_{c}=R_{1}\left\|\left(R_{2}+R_{4}\right)\right\| r_{s 1} \quad i_{d 1}=g_{m 1} v_{s 1} \quad v_{t b 2}=i_{d 1} R_{3}
$$

Figure 34: (a) Shunt-series amplifier. (b) Amplifier with feedback removed.

$$
i_{e 2}=G_{1} v_{t b 2}-\frac{v_{t}}{R_{d}} \quad G_{1}=\frac{1}{r_{e 2}^{\prime}+R_{5}} \quad r_{e 2}^{\prime}=\frac{R_{3}}{1+\beta_{2}}+r_{e 2} \quad R_{d}=R_{5}+r_{e 2}^{\prime} \quad i_{c 2}=\alpha_{2} i_{e 2}
$$

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 35. The determinant is

$$
\begin{aligned}
\Delta & =1-\left(1 \times R_{c} \times g_{m 1} \times R_{3} \times G_{1} \times \alpha_{2} \times \frac{-R_{4}}{R_{2}+R_{4}}\right) \\
& =1+R_{c} \times g_{m 1} \times R_{3} \times G_{1} \times \alpha_{2} \times \frac{R_{4}}{R_{2}+R_{4}} \\
& =5.025
\end{aligned}
$$

Figure 35: Signal-flow graph for the equations.
The current gain is

$$
\begin{aligned}
\frac{i_{e 2}}{i_{1}} & =\frac{R_{c} \times g_{m 1} \times R_{3} \times G_{1}}{\Delta} \\
& =\frac{R_{c} \times g_{m 1} \times R_{3} \times G_{1}}{1+R_{c} \times g_{m 1} \times R_{3} \times G_{1} \times \alpha_{2} \times \frac{R_{4}}{R_{2}+R_{4}}} \\
& =\frac{\left(R_{1}\left\|\left(R_{2}+R_{4}\right)\right\| r_{s 1} \times g_{m 1} \times R_{3} \times \frac{1}{r_{e 2}^{\prime}+R_{4}}\right)}{1+\left(R_{1}\left\|\left(R_{2}+R_{4}\right)\right\| r_{s 1} \times g_{m 1} \times R_{3} \times \frac{1}{r_{e 2}^{\prime}+R_{4}}\right) \times \alpha_{2} \times \frac{R_{4}}{R_{2}+R_{4}}}
\end{aligned}
$$

This is of the form

$$
\frac{i_{e 2}}{i_{1}}=\frac{A}{1+A b}
$$

where A and b are given by

$$
\begin{aligned}
A= & R_{c} \times g_{m 1} \times R_{3} \times G_{1} \\
= & R_{1}\left\|\left(R_{2}+R_{4}\right)\right\| r_{s 1} \times g_{m 1} \times R_{3} \times \frac{1}{r_{e 2}^{\prime}+R_{4}} \\
= & 44.75 \\
& \quad b=\alpha_{2} \times \frac{R_{4}}{R_{2}+R_{4}}=0.09
\end{aligned}
$$

Notice that the product $A b$ is dimensionless and positive. The latter must be true for the feedback to be negative.

Numerical evaluation of the current gain yields

$$
\frac{i_{e 2}}{i_{1}}=\frac{A}{\Delta}=8.90
$$

The resistances R_{a} and R_{A} are

$$
\begin{gathered}
R_{a}=\frac{v_{s 1}}{i_{1}}=\frac{R_{c}}{\Delta}=179.3 \Omega \\
R_{A}=R_{1}+\left(R_{a}^{-1}-R_{1}^{-1}\right)^{-1}=10.13 \mathrm{k} \Omega
\end{gathered}
$$

The resistance R_{b} and R_{B} are

$$
\begin{gathered}
R_{b}=\left(\frac{-i_{e 2}}{v_{t}}\right)^{-1}=\left(\frac{1}{\Delta} \frac{1}{R_{d}}\right)^{-1}=\Delta R_{d}=10.12 \mathrm{k} \Omega \\
R_{B}=\left(R_{b}-R_{5}\right) \| R_{5}=901.3 \Omega
\end{gathered}
$$

The voltage gain is given by

$$
\frac{v_{2}}{v_{1}}=\frac{i_{e 2}}{i_{1}} \times \frac{v_{2}}{i_{e 2}} \times \frac{i_{1}}{v_{1}}=\frac{A}{\Delta} \times R_{2} \times \frac{1}{R_{1}}=89.0
$$

Shunt-Series Example 3

A shunt-series feedback BJT amplifier is shown in Fig. 36(a). The input variable is the voltage v_{1} and the output variable is the current $i_{c 2}$. The feedback is from $i_{c 2}$ to $i_{e 2}$ to $i_{c 3}$ to the emitter of Q_{1}. The input summing is shunt because the feedback connects to the same node that the source connects. The output sampling is series because the feedback is proportional to the output current $i_{c 2}$. Solve for the voltage gain v_{2} / v_{1}, the input resistance R_{A}, and the output resistance R_{B}. Assume $\beta=100, r_{\pi}=2.5 \mathrm{k} \Omega$, $\alpha=\beta /(1+\beta), r_{e}=\alpha / g_{m}, r_{0}=\infty, r_{x}=0, V_{T}=25 \mathrm{mV}$. The resistor values are $R_{1}=R_{3}=1 \mathrm{k} \Omega$ and $R_{2}=R_{4}=R_{5}=10 \mathrm{k} \Omega$.

The circuit with feedback removed is shown in Fig. 36(b). The source is replaced with a Norton equivalent circuit consisting of the current

$$
i_{1}=\frac{v_{1}}{R_{1}}
$$

in parallel with the resistor R_{1}. The feedback is modeled by a Norton equivalent circuit consisting of the current $i_{c 3}$. Because $r_{03}=\infty$, the output resistance of this source is an open circuit. The output current is proportional to this current. Because $r_{02}=\infty$, the feedback does not affect the output resistance seen looking down through R_{5} because it is infinite. For a finite r_{02}, a test voltage source can be added in series with R_{5} to solve for this resistance. It would be found that a finite r_{02} considerably complicates the circuit equations and the flow graph.

Figure 36: (a) Amplifier circuit. (b) Circuit with feedback removed.

For the circuit with feedback removed, we can write

$$
\begin{gathered}
i_{a}=i_{1}-i_{c 3} \quad v_{e 1}=i_{a} R_{b} \quad R_{b}=R_{1}\left\|R_{2}\right\| r_{e 1} \quad i_{c 1}=-g_{m 1} v_{e 1} \quad i_{c 2}=-\beta_{2} i_{c 1} \quad i_{e 2}=\frac{i_{e 2}}{\alpha_{2}} \\
v_{t b 3}=i_{e 2} R_{4} \quad i_{e 3}=G_{1} v_{t b 3} \quad G_{1}=\frac{1}{r_{e 3}^{\prime}+R_{3}} \quad r_{e 3}^{\prime}=\frac{R_{4}}{1+\beta_{3}}+r_{e 3} \quad i_{c 3}=\alpha_{3} i_{e 3}
\end{gathered}
$$

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 37. The determinant is

$$
\begin{aligned}
\Delta & =1-\left(R_{b} \times-g_{m 1} \times-\beta_{1} \times \frac{1}{\alpha_{2}} \times R_{4} \times G_{1} \times \alpha_{3} \times-1\right) \\
& =1+R_{b} \times g_{m 1} \times \beta_{1} \times \frac{1}{\alpha_{2}} \times R_{4} \times G_{1} \times \alpha_{3} \\
& =858.7 \\
&
\end{aligned}
$$

Figure 37: Signal-flow graph for the equations.

The transconductance gain is

$$
\begin{aligned}
\frac{i_{c 2}}{i_{1}} & =\frac{1 \times R_{b} \times-g_{m 1} \times-\beta_{2}}{\Delta} \\
& =\frac{R_{b} \times g_{m 1} \times \beta_{2}}{1+R_{b} \times g_{m 1} \times \beta_{2} \times \frac{1}{\alpha_{2}} \times R_{4} \times G_{1} \times \alpha_{3}} \\
& =\frac{\left(R_{b} \times g_{m 1} \times \beta_{2}\right)}{1+\left(R_{b} \times g_{m 1} \times \beta_{2}\right) \times\left(\frac{1}{\alpha_{2}} \times R_{4} \times G_{1} \times \alpha_{3}\right)}
\end{aligned}
$$

This is of the form

$$
\frac{i_{c 2}}{i_{1}}=\frac{A}{1+A b}
$$

where A and b are given by

$$
\begin{aligned}
A & =R_{b} \times g_{m 1} \times \beta_{2} \\
& =R_{1}\left\|R_{2}\right\| r_{e 1} \times g_{m 1} \times \beta_{2} \\
& =96.39 \\
b=\frac{1}{\alpha_{2}} \times R_{4} \times G_{1} & \times \alpha_{3}=\frac{1}{\alpha_{2}} \times R_{4} \times \frac{1}{r_{e 3}^{\prime}+R_{3}} \times \alpha_{3}=8.899
\end{aligned}
$$

Notice that the product $A b$ is dimensionless and positive. The latter must be true for the feedback to be negative.

Numerical evaluation of the transconductance gain yields

$$
\frac{i_{c 2}}{i_{1}}=\frac{A}{\Delta}=0.112
$$

The voltage gain is given by

$$
\frac{v_{2}}{v_{1}}=\frac{i_{1}}{v_{1}} \times \frac{i_{c 2}}{i_{1}} \times \frac{v_{2}}{i_{c 2}}=\frac{1}{R_{1}} \times \frac{A}{\Delta} \times-R_{5}=-1.122
$$

The resistances R_{a}, R_{A}, and R_{B} are given by

$$
R_{a}=\frac{R_{b}}{\Delta}=0.028 \Omega \quad R_{A}=R_{1}+\left(R_{a}^{-1}-R_{1}^{-1}\right)^{-1}=1 \mathrm{k} \Omega \quad R_{B}=R_{5}=10 \mathrm{k} \Omega
$$

Shunt-Series Example 4

Figure 38(a) shows the ac signal circuit of a shunt-series feedback amplifier. The input variable is v_{1} and the output variable is $i_{d 2}$. The input signal and the feedback signal are applied to the gate of M_{1}. For the analysis to follow convention, the input source consisting of v_{1} in series with R_{1} must be converted into a Norton equivalent. The feedback is from the output current $i_{d 2}$ to the source of M_{2} and to the gate of M_{1}. The circuit values are $g_{m}=0.001 \mathrm{~S}, r_{s}=g_{m}^{-1}=1 \mathrm{k} \Omega, r_{0}=\infty, R_{1}=1 \mathrm{k} \Omega, R_{2}=100 \mathrm{k} \Omega, R_{3}=10 \mathrm{k} \Omega$, $R_{4}=1 \mathrm{k} \Omega, R_{5}=1 \mathrm{k} \Omega$, and $R_{6}=100 \Omega$.

The circuit with feedback removed is shown in Fig. 38(b). The source is replaced with a Norton equivalent circuit consisting of the current

$$
i_{1}=\frac{v_{1}}{R_{1}}
$$

in parallel with the resistor R_{1}. The feedback is modeled by a Norton equivalent circuit consisting of the current $k_{1} i_{d 2}$. The output current is proportional to this current. Because $r_{02}=\infty$, the feedback does not affect the output resistance seen looking up from signal ground into the lower terminal of R_{3} because it is infinite. For a finite r_{02}, a test voltage source can be added in series with R_{3} to solve for this resistance. It would be found that a finite r_{02} considerably complicates the circuit equations and the flow graph.

Figure 38: (a) Amplifier circuit. (b) Circuit with feedback removed.

The following equations can be written for the circuit with feedback removed:

$$
\begin{gathered}
i_{a}=i_{1}+k_{1} i_{d 2} \quad k_{1}=\frac{R_{5}}{R_{5}+R_{6}} \quad v_{g 1}=i_{a} R_{c} \quad R_{c}=R_{1} \| R_{b} \quad R_{b}=R_{5}+R_{6} \\
i_{d 1}=g_{m 1} v_{g 1} \quad i_{d 2}=G_{1}\left(v_{t g 2}-v_{t s 2}\right) \quad v_{t g 2}=-i_{d 1} R_{2} \quad v_{t s 2}=k_{2} v_{g 1} \\
k_{2}=\frac{R_{5}}{R_{5}+R_{6}} \quad G_{1}=\frac{1}{r_{s 2}+R_{t s 2}} \quad R_{t s 2}=R_{4}+R_{5} \| R_{6}
\end{gathered}
$$

The current i_{a} is the error current. The negative feedback tends to reduce i_{a}, making $\left|i_{a}\right| \rightarrow 0$ as the amount of feedback becomes infinite. When this is the case, setting $i_{a}=0$ yields the current gain $i_{d 2} / i_{1}=-1 / k_{1}$.

Although the equations can be solved algebraically, the signal-flow graph simplifies the solution. Fig. 39 shows the flow graph for the equations. The determinant of the graph is given by

$$
\begin{aligned}
\Delta & =1-\left(R_{c} \times g_{m 1} \times-R_{2} \times G_{1} \times k_{1}\right) \\
& =1+R_{c} \times g_{m 1} \times R_{2} \times G_{1} \times k_{1}
\end{aligned}
$$

Figure 39: Signal-flow graph for the equations.
The current gain is given by

$$
\begin{aligned}
\frac{i_{d 2}}{i_{1}} & =\frac{R_{c} \times g_{m 1} \times-R_{2} \times G_{1}}{\Delta} \\
& =\frac{-\left(R_{c} \times g_{m 1} \times R_{2} \times \frac{1}{r_{s 2}+R_{4}+R_{5} \| R_{6}}\right)}{1+\left[-\left(R_{c} \times g_{m 1} \times R_{2} \times \frac{1}{r_{s 2}+R_{4}+R_{5} \| R_{6}}\right)\right] \times\left(-k_{1}\right)}
\end{aligned}
$$

This is of the form

$$
\frac{i_{d 2}}{i_{1}}=\frac{A}{1+A b}
$$

where

$$
\begin{gathered}
A=-\left(R_{c} \times g_{m 1} \times R_{2} \times \frac{1}{r_{s 2}+R_{4}+R_{5} \| R_{6}}\right)=-25.02 \\
b=-k_{1}=-0.909
\end{gathered}
$$

Note that $A b$ is dimensionless. Numerical evaluation yields

$$
\frac{i_{d 2}}{i_{1}}=\frac{-25.02}{1+(-25.02) \times(-0.909)}=-1.054
$$

The voltage gain is given by

$$
\frac{v_{2}}{v_{1}}=\frac{i_{d 2}}{i_{1}} \times \frac{i_{1}}{v_{1}} \times \frac{v_{2}}{i_{d 2}}=\frac{i_{d 2}}{i_{1}} \times \frac{1}{R_{1}} \times-R_{3}=-10.54
$$

The resistance R_{a} is

$$
R_{a}=\frac{v_{s 1}}{i_{1}}=\frac{R_{c}}{\Delta}=\frac{R_{1} \|\left(R_{5}+R_{6}\right)}{\Delta}=22.03 \Omega
$$

Note that the feedback tends to decrease R_{a}. The resistance R_{A} is

$$
R_{A}=R_{1}+\left(R_{a}^{-1}-R_{1}^{-1}\right)^{-1}=1.023 \mathrm{k} \Omega
$$

The resistance R_{B} is

$$
R_{B}=R_{3}=10 \mathrm{k} \Omega
$$

This is not a function of the feedback because r_{02} has been assumed to be infinite.

Shunt-Series Example 5

Figure 40(a) shows the ac signal circuit of a shunt-series feedback amplifier. The input variable is v_{1} and the output variable is $i_{d 2}$. The input signal and the feedback signal are applied to the base Q_{1}. For the analysis to follow convention, the input source consisting of v_{1} in series with R_{1} must be converted into a Norton equivalent. The feedback is from the output current $i_{c 2}$ to the current $i_{e 2}$ to the current $i_{e 3}$ to the current $i_{c 3}$. The resistor values are $R_{1}=1 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{3}=10 \mathrm{k} \Omega$, and $R_{4}=10 \mathrm{k} \Omega$. Assume $\beta=100$, $r_{\pi}=2.5 \mathrm{k} \Omega, \alpha=\beta /(1+\beta), r_{e}=\alpha / g_{m}, r_{0}=\infty, r_{x}=0, V_{T}=25 \mathrm{mV}$.

Figure 40: (a) Amplifier circuit. (b) Circuit with the the source replaced with a Norton equivalent.
The circuit with feedback removed is shown in Fig. 40(b). The source is replaced with a Norton equivalent circuit consisting of the current

$$
i_{1}=\frac{v_{1}}{R_{1}}
$$

in parallel with the resistor R_{1}. The feedback is modeled by a Norton equivalent circuit consisting of the current $i_{c 3}$. The output current is proportional to this current. Because $r_{02}=\infty$, the feedback does not affect the output resistance seen looking up from signal ground into the lower terminal of R_{4} because it is
infinite. For a finite r_{02}, a test voltage source can be added in series with R_{4} to solve for this resistance. It would be found that a finite r_{02} considerably complicates the circuit equations and the flow graph.

The following equations can be written for the circuit with feedback removed:

$$
\left.\begin{array}{c}
i_{a}=i_{1}+i_{c 3} \quad v_{b 1}=i_{a} R_{b}
\end{array} \quad R_{b}=R_{1} \| r_{\pi 1} \quad i_{c 1}=g_{m 1} v_{b 1} \quad v_{t b 2}=-i_{c 1} R_{3} \quad i_{e 2}=G_{1} v_{t b 2}\right)
$$

The current i_{a} is the error current. The negative feedback tends to reduce i_{a}, making $\left|i_{a}\right| \rightarrow 0$ as the amount of feedback becomes infinite. When this is the case, setting $i_{a}=0$ yields the current gain $i_{d 2} / i_{1}=-1 / k_{1}$.

Although the equations can be solved algebraically, the signal-flow graph simplifies the solution. Fig. 41 shows the flow graph for the equations. The determinant of the graph is given by

$$
\begin{aligned}
\Delta & =1-\left(R_{b} \times g_{m 1} \times-R_{3} \times G_{1} \times 1 \times \alpha_{3} \times 1\right) \\
& =1+R_{b} \times g_{m 1} \times R_{3} \times G_{1} \times \alpha_{3} \\
& =28.88
\end{aligned}
$$

Figure 41: Signal-flow graph for the equations.

The current gain is given by

$$
\begin{aligned}
\frac{i_{d 2}}{i_{1}} & =\frac{1 \times R_{b} \times g_{m 1} \times-R_{3} \times G_{1} \times \alpha_{2}}{\Delta} \\
& =\frac{-\left(R_{b} \times g_{m 1} \times R_{3} \times G_{1} \times \alpha_{2}\right)}{1+\left[-\left(R_{b} \times g_{m 1} \times R_{3} \times G_{1} \times \alpha_{2}\right)\right] \times\left(-\frac{\alpha_{3}}{\alpha_{2}}\right)}
\end{aligned}
$$

This is of the form

$$
\frac{i_{d 2}}{i_{1}}=\frac{A}{1+A b}
$$

where

$$
\begin{gathered}
A=-\left(R_{b} \times g_{m 1} \times R_{3} \times G_{1} \times \alpha_{2}\right)=-27.88 \\
b=-\frac{\alpha_{3}}{\alpha_{2}}=-1
\end{gathered}
$$

Note that $A b$ is dimensionless and the product is positive. The latter is a result of the feedback being negative. Numerical evaluation yields

$$
\frac{i_{d 2}}{i_{1}}=\frac{-27.88}{1+(-27.88) \times(-1)}=-0.965
$$

The voltage gain is given by

$$
\frac{v_{2}}{v_{1}}=\frac{i_{d 2}}{i_{1}} \times \frac{i_{1}}{v_{1}} \times \frac{v_{2}}{i_{d 2}}=\frac{i_{d 2}}{i_{1}} \times \frac{1}{R_{1}} \times-R_{4}=9.654
$$

The resistance R_{a} is

$$
R_{a}=\frac{v_{s 1}}{i_{1}}=\frac{R_{b}}{\Delta}=\frac{R_{1} \| r_{\pi 1}}{\Delta}=24.74 \Omega
$$

Note that the feedback tends to decrease R_{a}. The resistance R_{A} is

$$
R_{A}=R_{1}+\left(R_{a}^{-1}-R_{1}^{-1}\right)^{-1}=1.025 \mathrm{k} \Omega
$$

The resistance R_{B} is

$$
R_{B}=R_{4}=10 \mathrm{k} \Omega
$$

This is not a function of the feedback because r_{02} has been assumed to be infinite.

