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Collection of Solved Feedback Amplifier Problems
This document contains a collection of solved feedback amplifier problems involving one or more active
devices. The solutions make use of a graphical tool for solving simultaneous equations that is called the
Mason Flow Graph (also called the Signal Flow Graph). When set up properly, the graph can be used to
obtain by inspection the gain of a feedback amplifier, its input resistance, and its output resistance without
solving simultaneous equations. Some background on how the equations are written and how the flow graph
is used to solve them can be found at

http://users.ece.gatech.edu/~mleach/ece3050/notes/feedback/fdbkamps.pdf

The gain of a feedback amplifier is usually written in the form A ÷ (1 + bA), where A is the gain with
feedback removed and b is the feedback factor. In order for this equation to apply to the four types of
feedback amplifiers, the input and output variables must be chosen correctly. For amplifiers that employ
series summing at the input (alson called voltage summing), the input variable must be a voltage. In this
case, the source is modeled as a Thévenin equivalent circuit. For amplifiers that employ shunt summing at
the input (also called current summing), the input variable must be a current. In this case, the source is
modeled as a Norton equivalent circuit. When the output sampling is in shunt with the load (also called
voltage sampling), the output variable must be a voltage. When the output sampling is in series with the
load (also called current sampling), the output variable must be a current. These conventions are followed
in the following examples.
The quantity Ab is called the loop gain. For the feedback to be negative, the algebraic sign of Ab must

be positive. If Ab is negative the feedback is positive and the amplifier is unstable. Thus if A is positive, b
must also be positive. If A is negative, b must be negative. The quantity (1 +Ab) is called the amount of
feedback. It is often expressed in dB with the relation 20 log (1 +Ab).
For series summing at the input, the expression for the input resistance is of the form RIN × (1 + bA),

where RIN is the input resistance without feedback. For shunt summing at the input, the expression for
the input resistance is of the form RIN ÷ (1 + bA). For shunt sampling at the output, the expression for
the output resistance is of the form RO ÷ (1 + bA), where RO is the output resistance without feedback. To
calculate this in the examples, a test current source is added in shunt with the load. For series sampling at
the output, the expression for the output resistance is of the form RO × (1 + bA). To calculate this in the
examples, a test voltage source is added in series with the load.
Most texts neglect the feedforward gain through the feedback network in calculating the forward gain A.

When the flow graph is used for the analysis, this feedforward gain can easily be included in the analysis
without complicating the solution. This is done in all of the examples here.
The dc bias sources in the examples are not shown. It is assumed that the solutions for the dc voltages

and currents in the circuits are known. In addition, it is assumed that any dc coupling capacitors in the
circuits are ac short circuits for the small-signal analysis.

Series-Shunt Example 1
Figure 1(a) shows the ac signal circuit of a series-shunt feedback amplifier. The input variable is v1 and the
output variable is v2. The input signal is applied to the gate of M1 and the feedback signal is applied to the
source of M1. Fig. 1(b) shows the circuit with feedback removed. A test current source it is added in shunt
with the output to calculate the output resistance RB. The feedback at the source of M1 is modeled by a
Thévenin equivalent circuit. The feedback factor or feedback ratio b is the coefficient of v2 in this source, i.e.
b = R1/ (R1 +R3). The circuit values are gm = 0.001 S, rs = g−1m = 1kΩ, r0 =∞, R1 = 1kΩ, R2 = 10kΩ,
R3 = 9kΩ, R4 = 1kΩ, and R5 = 100 kΩ.
The following equations can be written for the circuit with feedback removed:

id1 = Gm1va Gm1 =
1

rs1 +R1kR3 va = v1 − vts1 vts1 =
R1

R1 +R3
v2 id2 = −gmvtg2
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Figure 1: (a) Amplifier circuit. (b) Circuit with feedback removed.

vtg2 = −id1R2 v2 = id2RC + itRC + id1RD RC = R4k (R1 +R3) RD =
R1R4

R1 +R3 +R4

The voltage va is the error voltage. The negative feedback tends to reduce va, making |va| → 0 as the
amount of feedback becomes infinite. When this is the case, setting va = 0 yields the voltage gain v2/v1 =
b−1 = 1 + R3/R1. Although the equations can be solved algebraically, the signal-flow graph simplifies the
solution.
Figure 2 shows the signal-flow graph for the equations. The determinant of the graph is given by

∆ = 1−Gm1 × [−R2 × (−gm2)×RC +RD]× R1
R1 +R3

× (−1)

Figure 2: Signal-flow graph for the equations.

The voltage gain v2/v1 is calculated with it = 0. It is given by

v2
v1

=
Gm1 × [−R2 × (−gm2)×RC +RD]

∆

=

1

rs1 +R1kR3 × (R2 × gm2 ×RC +RD)

1 +
1

rs1 +R1kR3 × (R2 × gm2 ×RC +RD)× R1
R1 +R3
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This is of the form
v2
v1
=

A

1 +Ab

where
A =

1

rs1 +R1kR3 × (R2 × gm2 ×RC +RD) = 4.83

b =
R1

R1 +R3
= 0.1

Note that Ab is dimensionless. Numerical evaluation yields

v2
v1
=

4.83

1 + 0.483
= 3.26

The output resistance RB is calculated with v1 = 0. It is given by

RB =
v2
it
=

RC

∆
=

RC

1 +Ab
= 613Ω

Note that the feedback tends to decrease RB. Because the gate current of M1 is zero, the input resistance
is RA = R5 = 100kΩ.

Series-Shunt Example 2
A series-shunt feedback BJT amplifier is shown in Fig. 3(a). A test current source is added to the output
to solve for the output resistance. Solve for the voltage gain v2/v1, the input resistance RA, and the output
resistance RB. Assume β = 100, rπ = 10kΩ, α = β/ (1 + β), gm = β/rπ, re = α/gm, r0 = ∞, rx = 0,
R1 = 1kΩ, R2 = 1kΩ, R3 = 2kΩ, R4 = 4kΩ, and R5 = 10kΩ. The circuit with feedback removed is shown
in Fig. 3(b). The circuit seen looking out of the emitter of Q1 is replaced with a Thévenin equivalent circuit
made with respect to v2. A test current source it is added to the output to solve for the output resistance.

Figure 3: (a) Amplifier circuit. (b) Circuit with feedback removed.

For the circuit with feedback removed, we can write

ie1 = G1va va = v1 − v2
R3

R3 +R4
G1 =

1

r0e1 +R3kR4 r0e1 =
R1
1 + β

+ re ic1 = αie1

ib1 =
ic1
β

vtb2 = −ic1R2 ie2 = −G2vtb2 G2 =
1

r0e2
r0e2 =

R2
1 + β

+ re
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ic2 = αie2 v2 = ic2Ra + itRa + ie1Rb Ra = R5k (R3 +R4) Rb =
R3R5

R3 +R4 +R5
The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown

in Fig. 4. The determinant is

∆ = 1−G1 × [α×−R2 ×−G2 × α×Ra +Rb]× −R3
R3 +R4

= 1 +G1 × [α×R2 ×G2 × α×Ra +Rb]× R3
R3 +R4

= 9.09

Figure 4: Signal-flow graph for the equations.

The voltage gain is

v2
v1

=
G1 × [α×−R2 ×−G2 × α×Ra +Rb]

∆

=
G1 × [α×R2 ×G2 × α×Ra +Rb]

1 +G1 × [α×R2 ×G2 × α×Ra +Rb]× R3
R3 +R4

This is of the form
v2
i1
=

A

1 +Ab

where

A = G1 × [α×R2 ×G2 × α×Ra +Rb]

=
1

r0e1 +R3kR4

·
α×R2 × 1

r0e2
× α×R5k (R3 +R4) +

R3R5
R3 +R4 +R5

¸
= 24.27

b =
R3

R3 +R4
= 0.333

Notice that the product Ab is positive. This must be true for the feedback to be negative.
Numerical evaluation of the voltage gain yields

v2
v1
=

A

∆
= 2.67

The resistances RA and RB are given by

RA =

µ
ib1
v1

¶−1
=

µ
G1α/β

∆

¶−1
= ∆× βr0e1

α
= ∆× β

α
(r0e1 +R3kR4) = 1.32MΩ

RB =
v2
it
=

Ra

∆
=

R5k (R3 +R4)

∆
= 412.5Ω
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Series-Shunt Example 3
A series-shunt feedback BJT amplifier is shown in Fig. 5(a). Solve for the voltage gain v2/v1, the input
resistance RA, and the output resistance RB . For J1, assume gm1 = 0.003 S, and r01 =∞. For Q2, assume
β2 = 100, rπ2 = 2.5 kΩ, α2 = β2/ (1 + β2), gm2 = β2/rπ2, re2 = α2/gm2, r02 = ∞, rx2 = 0. The circuit
elements are R1 = 1MΩ. R2 = 10 kΩ, R3 = 1kΩ, R4 = 20kΩ, and R5 = 10 kΩ. The circuit with feedback
removed is shown in Fig. 5(b). The circuit seen looking out of the source of J1 is replaced with a Thévenin
equivalent circuit made with respect to v2. A test current source it is added in shunt with the output to
solve for the output resistance.

Figure 5: (a) Amplifier circuit. (b) Circuit with feedback removed.

For the circuit with feedback removed, we can write

va = v1 − v2
R3

R3 +R4
id1 = G1va G1 =

1

rs1 +R3kR4

vtb2 = −id1R2 ie2 = −G2vtb2 G2 =
1

r0e2
r0e2 =

R2
1 + β2

+ re2

ic2 = α2ie2 v2 = ic2Ra + itRa + id1Rb Ra = R5k (R3 +R4) Rb =
R3R5

R3 +R4 +R5

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 6. The determinant is

∆ = 1−G1 × [−R2 ×−G2 × α×Ra +Rb]× −R3
R3 +R4

= 1 +G1 × [R3 ×G2 × α×Ra +Rb]× R3
R3 +R4

= 21.08

The voltage gain is

v2
v1

=
G1 × [−R2 ×−G2 × α2 ×Ra +Rb]

∆

=
G1 × [R2 ×G2 × α2 ×Ra +Rb]

1 +G1 × [R3 ×G2 × α×Ra +Rb]× R3
R3 +R4
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Figure 6: Signal-flow graph for the equations.

This is of the form
v2
i1
=

A

∆
=

A

1 +Ab

where

A = G1 × [R2 ×G2 × α2 ×Ra +Rb]

=
1

rs1 +R3kR4

·
R2 × 1

r0e1
× α1 ×R5k (R3 +R4) +

R3R4
R3 +R4 +R5

¸
= 421.8

b =
R3

R3 +R4
= 0.0467

Notice that the product Ab is positive. This must be true for the feedback to be negative.
Numerical evaluation of the voltage gain yields

v2
v1
=

421.8

1 + 421.8× 0.0476 = 20

The resistances RA and RB are given by

RA = R1 = 1MΩ

RB =
v2
it
=

Ra

∆
=

R5k (R3 +R4)

∆
= 321.3Ω

Series-Shunt Example 4
A series-shunt feedback BJT amplifier is shown in Fig. 7(a). A test current source is added to the output
to solve for the output resistance. Solve for the voltage gain v2/v1, the input resistance RA, and the output
resistance RB . Assume β = 50, rπ = 2.5 kΩ, α = β/ (1 + β), gm = β/rπ, re = α/gm, r0 = ∞, rx = 0,
R1 = 1kΩ, R2 = 100Ω, R3 = 9.9 kΩ, R4 = 10 kΩ, and R5 = 10 kΩ. The circuit with feedback removed is
shown in Fig. 8. The circuit seen looking out of the base of Q2 is a Thévenin equivalent circuit made with
respect to the voltage v2. A test current source it is added in shunt with the output to solve for the output
resistance.
The emitter eQuivalent circuit for calculating ie1 and ie2 is shown in Fig. 7(b). For this circuit and the

circuit with feedback removed, we can write

ie1 = G1ve ve = v1 − v2
R2

R2 +R3
G1 =

1

re1 + r0e2
r0e2 =

R2kR3
1 + β

+ re ic1 = αie1

ib1 =
ic1
β

vtb3 = −ic1R1 ie3 = −G2vtb3 G2 =
1

r0e3
r0e3 =

R1
1 + β

+ re

ic3 = αie3 v2 = ic3Ra + itRa − ib2Rb Ra = R4k (R2 +R3) Rb =
R2R4

R2 +R3 +R4

6



Figure 7: (a) Amplifier circuit. (b) Emitter equivalent circuit for calculating ie1 and ie2.

Figure 8: Circuit with feedback removed.
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The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 9. The determinant is

∆ = 1−G1 ×
µ
α×−R1 ×−G2 × α×Ra − Rb

1 + β

¶
× −R2

R2 +R3

= 1 +G1 ×
µ
α×R1 ×G2 × α×Ra − Rb

1 + β

¶
× R2

R2 +R3
= 8.004

Figure 9: Flow graph for the equations.

The voltage gain is

v2
v1

=

G1 ×
µ
α×−R1 ×−G2 × α×Ra − Rb

1 + β

¶
∆

=

G1 ×
µ
α×R1 ×G2 × α×Ra − Rb

1 + β

¶
1 +G1 ×

µ
α×R1 ×G2 × α×Ra − Rb

1 + β

¶
× R2

R2 +R3

This is of the form
v2
i1
=

A

1 +Ab
where

A = G1 ×
µ
α×R1 ×G2 × α×Ra − Rb

1 + β

¶
1

re1 + r0e2

·
α×R1 × 1

r0e3
× α×R4k (R2 +R3)− 1

1 + β

R2R4
R2 +R3 +R4

¸
= 700.4

b =
R2

R2 +R3
= 0.01

Notice that the product Ab is positive. This must be true for the feedback to be negative.
Numerical evaluation of the voltage gain yields

v2
v1
=

A

∆
= 87.51

The resistances RA and RB are given by

RA = R5k
µ
ib1
v1

¶−1
= R5k

µ
G1α/β

∆

¶−1
= R5k [∆× (1 + β)× (re1 + r0e2)] = 8.032 kΩ

RB =
v2
it
=

Ra

∆
=

R4k (R2 +R3)

∆
= 624.7Ω
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Shunt-Shunt Example 1
Figure 10(a) shows the ac signal circuit of a shunt-series feedback amplifier. The input variable is v1 and
the output variable is v2. The input signal and the feedback signal are applied to the base of Q1. A test
current source it is added in shunt with the output to calculate the output resistance RB. For the analysis
to follow convention, the input source consisting of v1 in series with R1 must be converted into a Norton
equivalent. This circuit is the current i1 = v1/R1 in parallel with the resistor R1. Fig. 10(b) shows the
circuit with feedback removed and the source replaced with the Norton equivalent. The feedback at the base
of Q1 is modeled by a Norton equivalent circuit v2/R4 in parallel with the resistor R4. The feedback factor
or feedback ratio b is the negative of the coefficient of v2 in this source, i.e. b = −R−14 . The circuit values
are β1 = 100, gm1 = 0.05 S, rx1 = 0, rib1 = β1/gm1 = 2kΩ, r01 = ∞, gm2 = 0.001 S, rs2 = g−1m2 = 1kΩ,
r02 =∞, R1 = 1kΩ, R2 = 1kΩ, R3 = 10kΩ, and R4 = 10 kΩ.

Figure 10: (a) Amplifier circuit. (b) Circuit with feedback removed.

The following equations can be written for the circuit with feedback removed:

vb1 = iaRb ia = i1 +
v2
R4

Rb = R1kR4krib1 ic1 = gm1vb1

id1 = −ic1 R2
rs1 +R2

v2 = id1Rc + itRc + vb1
R3

R3 +R4
Rc = R3kR4

The current ia is the error current. The negative feedback tends to reduce ia, making |ia|→ 0 as the amount
of feedback becomes infinite. When this is the case, setting ia = 0 yields the current gain v2/i1 = −R4.
Although the equations can be solved algebraically, the signal-flow graph simplifies the solution. Figure

11 shows the flow graph for the equations. The determinant of the graph is given by

∆ = 1−Rb ×
·
gm1 × −R2

rs1 +R2
×Rc +

R3
R3 +R4

¸
× 1

R4

The transresistance gain is calculated with it = 0. It is given by

v2
i1

=

Rb ×
µ
gm1 × −R2

rs2 +R2
×Rc +

R3
R3 +R4

¶
∆

= −
(R1kR4krib1)×

·
gm1 × −R2

rs2 +R2
× (R3kR4) + R3

R3 +R4

¸
1 +

·
(R1kR4krib1)× gm1 × −R2

rs2 +R2
× (R3kR4) + R3

R3 +R4

¸
× −1

R4
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Figure 11: Signal-flow graph for the equations.

This is of the form
v2
i1
=

A

1 +Ab

where

A = (R1kR4krib1)×
·
gm1 × −R2

rs2 +R2
× (R3kR4) + R3

R3 +R4

¸
= −77.81 kΩ

b = − 1

R4
= −10−4 S

Note that Ab is dimensionless and positive. Numerical evaluation yields

v2
i1
=

−77.81× 103
1 + (−77.81× 103)× (−10−4) = −8.861 kΩ

The voltage gain is given by
v2
v1
=

v2
i1
× i1

v1
=

v2
i1
× 1

R1
= −8.861

The resistance Ra is calculated with it = 0. It is given by

Ra =
vb1
i1
=

Rb

∆
=

R1kR4krib1
1 +Ab

= 71.17Ω

Note that the feedback tends to decrease Ra. The resistance RA is calculated as follows:

RA = R1 +
¡
R−1a −R−11

¢−1
= 1.077 kΩ

The resistance RB is calculated with i1 = 0. It is given by

RB =
v2
it
=

Rc

∆
=

R3kR4
1 +Ab

= 569.4Ω

Shunt-Shunt Example 2
A shunt-shunt feedback JFET amplifier is shown in Fig. 12(a). Solve for the voltage gain v2/v1, the input
resistance RA, and the output resistance RB . Assume gm = 0.005 S, rs = g−1m = 200Ω, r0 =∞, R1 = 3kΩ,
R2 = 7kΩ, R3 = 1kΩ, R4 = 10kΩ. The circuit with feedback removed is shown in Fig. 12(b) In this circuit,
the source is replaced by a Norton equivalent circuit consisting of a current i1 = v1/R1 in parallel with the
resistor R1. This is necessary for the feedback analysis to conform to convention for shunt-shunt feedback..
The circuit seen looking up into R2 is replaced with a Norton equivalent circuit made with respect to v2. A
test current source it is added in shunt with the output to solve for the output resistance.
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Figure 12: (a) Amplifier circuit. (b) Circuit with feedback removed.

For the circuit with feedback removed, we can write

vg = i1Rb +
v2
R2

Rb Rb = R1kR2 id = Gmvg Gm =
1

rs +R3

v2 = −idRc + itRc + vg
R4

R2 +R4
Rc = R2kR4

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 13. The determinant is

∆ = 1−Rb ×
·
Gm ×−Rc +

R4
R2 +R4

¸
× 1

R2

= 1 +Rb ×
·
Gm ×Rc − R4

R2 +R4

¸
× 1

R2
= 1.853Ω

Figure 13: Signal-flow graph for the equations.
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The transresistance gain is

v2
i1

=

Rb ×
·
Gm ×−Rc +

R4
R2 +R4

¸
∆

=

−Rb ×
·
Gm ×Rc − R4

R2 +R4

¸
1 +Rb ×

·
Gm ×Rc +

R4
R2 +R4

¸
× 1

R2

This is of the form
v2
i1
=

A

1 +Ab

where

A = −Rb ×
·
Gm ×Rc − R4

R2 +R4

¸
= − (R1kR2)×

·
Gm ×R2kR4 − R4

R2 +R4

¸
= −5.971 kΩ

b = − 1

R2
= −0.1429mS

Note that the product Ab is dimensionless and positive. The latter must be true for the feedback to be
negative. Numerical evaluation yields

v2
i1
=

A

∆
= −3.22 kΩ

The voltage gain is given by

v2
v1
=

v2
i1
× i1

v1
=

A

∆
× 1

R1
= −1.074

The resistances Ra, RA, and RB are given by

Ra =
vg
i1
=

Rb

∆
= 1.13 kΩ

RA = R1 +

µ
1

Ra
− 1

R1

¶−1
= 4.82 kΩ

RB =
v2
it
=

Rc

∆
= 2.22 kΩ

Shunt-Shunt Example 3
A shunt-shunt feedback BJT amplifier is shown in Fig. 14. The input variable is the v1 and the output
variable is the voltage v2. The feedback resistor is R2. The summing at the input is shunt because the
input through R1 and the feedback through R2 connect in shunt to the same node, i.e. the vb1 node. The
output sampling is shunt because R2 connects to the output node. Solve for the voltage gain v2/v1, the input
resistance RA, and the output resistance RB. Assume β = 100, rπ = 2.5 kΩ, gm = β/rπ, α = β/ (1 + β),
re = α/gm, r0 = ∞, rx = 0, VT = 25mV. The resistor values are R1 = 1kΩ, R2 = 20 kΩ, R3 = 500Ω,
R4 = 1kΩ, and R5 = 5kΩ.
The circuit with feedback removed is shown in Fig. 15. A test current source it is added in shunt with

the output to solve for the output resistance RB. In the circuit, the source is replaced by a Norton equivalent
circuit consisting of a current

i1 =
v1
R1

12



Figure 14: Amplifier circuit.

Figure 15: Circuit with feedback removed.

in parallel with the resistor R1. This is necessary for the feedback analysis to conform to convention for shunt
summing. The circuit seen looking into R2 from the collector of Q3 is replaced with a Thevenin equivalent
circuit made with respect with vb1.
For the circuit with feedback removed, we can write

ie = i1 +
v2
R2

vb1 = ieRb Rb = R1kR2krπ ic1 = gmvb1 vb2 = −ic1Rc Rc = R3krπ

vb3 = −ic2Rd Rd = R4krπ ic3 = gmvb3 v2 = (−ic3 + it)Re + vb1
R5

R2 +R5
Re = R2kR5

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 16. The determinant is

∆ = 1−Rb ×
µ
gm ×−Rc × gm ×−Rd × gm ×−Re +

R5
R2 +R5

¶
× 1

R2

= 1 +Rb ×
µ
gm ×Rc × gm ×Rd × gm ×Re − R5

R2 +R5

¶
× 1

R2
= 354.7
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Figure 16: Signal-flow graph for the equations.

The transresistance gain is

v2
i1

=

Rb ×
µ
gm ×−Rc × gm ×−Rd × gm ×−Re +

R2
R2 +R5

¶
∆

=

−Rb ×
µ
gm ×Rc × gm ×Rd × gm ×Re − R2

R2 +R5

¶
1 +Rb ×

µ
gm ×Rc × gm ×Rd × gm ×Re − R2

R2 +R5

¶
× 1

R2

=

−Rb ×
µ
gm ×Rc × gm ×Rd × gm ×Re − R2

R2 +R5

¶
1 +

·
−Rb ×

µ
gm ×Rc × gm ×Rd × gm ×Re − R2

R2 +R5

¶¸
× −1

R2

This is of the form
ie2
v1
=

A

1 +Ab

where A and b are given by

A = −Rb ×
µ
gm ×Rc × gm ×Rd × gm ×Re − R5

R2 +R5

¶
= −R1kR2krπ ×

µ
gm ×R3krπ × gm ×R4krπ × gm ×R2kR5 − R5

R2 +R5

¶
= −7.073MΩ

b =
−1
R2

= −50µS

Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be
negative.
Numerical evaluation of the transresistance gain yields

v2
i1
=

A

∆
= −19.94 kΩ

The resistances Ra and RA are

Ra =
vb1
i1
=

Rc

∆
= 1.945Ω

RA = R1 +

µ
1

Ra
− 1

R1

¶−1
= 1.002 kΩ
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The resistance RB is

RB =
v2
it
=

Re

∆
= 11.28Ω

The voltage gain is
v2
vb1

=
v2
i1
×
µ
vb1
i1

¶−1
=

µ
A

∆

¶
× 1

RA
= −19.91

Shunt-Shunt Example 4
A shunt-shunt feedback BJT amplifier is shown in Fig. 17. The input variable is the v1 and the output
variable is the voltage v2. The feedback resistor is R2. The summing at the input is shunt because the
input through R1 and the feedback through R2 connect in shunt to the same node, i.e. the ve1 node. The
output sampling is shunt because R2 connects to the output node. Solve for the voltage gain v2/v1, the input
resistance RA, and the output resistance RB. For Q1 and Q2, assume β = 100, rπ = 2.5 kΩ, gm = β/rπ,
α = β/ (1 + β), re = α/gm, r0 =∞, rx = 0, VT = 25mV. For J3, assume gm3 = 0.001 S and r03 =∞. The
resistor values are R1 = 1kΩ, R2 = 100 kΩ, R3 = 10Ω, R4 = 30kΩ, and R5 = 10 kΩ.

Figure 17: Amplifier circuit.

The circuit with feedback removed is shown in Fig. 18. A test current source it is added in shunt with
the output to solve for the output resistance RB. In the circuit, the source is replaced by a Norton equivalent
circuit consisting of a current

i1 =
v1
R1

in parallel with the resistor R1. This is necessary for the feedback analysis to conform to convention for shunt
summing. The circuit seen looking into R2 from the collector of Q3 is replaced with a Thévenin equivalent
circuit made with respect with ve1.

Figure 18: Circuit with feedback removed.
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For the circuit with feedback removed, we can write

ie = i1 +
v2
R2

ve1 = ieRb Rb = R1kR2kre1 ic1 = gm1ve1 vtg3 = ic1R3

id3 = gm3vtg3 vtb2 = −id3R4 ie2 = −G1vtb2 G1 =
1

r0e2 +R2kR5 r0e2 =
1

R4
+ re2

v2 = (−ie2 + it)Rc + ve1
R5

R2 +R5
Rc = R2kR5

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 19. The determinant is

∆ = 1−Rb ×
µ
gm1 ×R3 × gm2 ×−R4 ×−G1 ×−Rc +

R5
R2 +R5

¶
× 1

R2

= 1 +Rb ×
µ
gm1 ×R3 × gm2 ×R4 ×G1 ×Rc − R5

R2 +R5

¶
× 1

R2
= 113.0

Figure 19: Signal-flow graph for the equations.

The transresistance gain is

v2
i1

=

Rb ×
µ
gm1 ×R3 × gm2 ×−R4 ×−G1 ×−Rc +

R2
R2 +R5

¶
∆

=

−Rb ×
µ
gm1 ×R3 × gm2 ×R4 ×G1 ×Rc − R2

R2 +R5

¶
1 +Rb ×

µ
gm1 ×R3 × gm2 ×R4 ×G1 ×Rc − R2

R2 +R5

¶
× 1

R2

=

−Rb ×
µ
gm1 ×R3 × gm2 ×R4 ×G1 ×Rc − R2

R2 +R5

¶
1 +

·
−Rb ×

µ
gm1 ×R3 × gm2 ×R4 ×G1 ×Rc − R2

R2 +R5
− R2

R2 +R5

¶¸
× −1

R2

This is of the form
ie2
v1
=

A

1 +Ab

where A and b are given by

A = −Rb ×
µ
gm1 ×R3 × gm2 ×R4 ×G1 ×Rc − R2

R2 +R5

¶
= −R1kR2kre1 ×

µ
gm1 ×R3 × gm2 ×R4 × 1

r0e2 +R2kR5 ×R2kR5 − R5
R2 +R5

¶
= −11.2MΩ
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b =
−1
R2

= −10µS

Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be
negative.
Numerical evaluation of the transresistance gain yields

v2
i1
=

A

∆
= −99.11 kΩ

The resistances Ra and RA are

Ra =
ve1
i1
=

Rb

∆
= 0.214Ω

RA = R1 +

µ
1

Ra
− 1

R1

¶−1
= 1kΩ

The resistance RB is

RB =
v2
it
=

Rc

∆
= 80.49Ω

The voltage gain is
v2
ve1

=
v2
i1
×
µ
ve1
i1

¶−1
=

µ
A

∆

¶
× 1

RA
= −99.09

Series-Series Example 1
Figure 20(a) shows the ac signal circuit of a series-series feedback amplifier. The input variable is v1 and the
output variable is id2. The input signal is applied to the gate of M1 and the feedback signal is applied to
the source of M1. Fig. 20(b) shows the circuit with feedback removed. A test voltage source vt is added in
series with the output to calculate the output resistance Rb. The feedback at the source of M1 is modeled
by a Thévenin equivalent circuit. The feedback factor or feedback ratio b is the coefficient of id2 in this
source, i.e. b = R5. The circuit values are gm = 0.001 S, rs = g−1m = 1kΩ, r0 =∞, R1 = 50 kΩ, R2 = 10kΩ,
R3 = 1kΩ, R4 = 9kΩ, and R5 = 1kΩ.

Figure 20: (a) Amplifier circuit. (b) Circuit with feedback removed.
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The following equations can be written for the circuit with feedback removed:

id1 = Gm1va Gm1 =
1

rs1 +R5
va = v1 − vts1 vts1 = id2R5

id2 = Gm2vb Gm2 =
1

rs2 +R3
vb = vt − vtg2 vtg2 = −id1R2

The voltage va is the error voltage. The negative feedback tends to reduce va, making |va| → 0 as the
amount of feedback becomes infinite. When this is the case, setting va = 0 yields the transconductance gain
id2/v1 = b−1 = R−15 . Although the equations can be solved algebraically, the signal-flow graph simplifies the
solution.
Figure 21 shows the signal-flow graph for the equations. The determinant of the graph is given by

∆ = 1−Gm1 × (−R2)× (−1)×Gm2 ×R5 × (−1)

Figure 21: Flow graph for the equations.

The transconductance gain id2/v1 is calculated with vt = 0. It is given by

id2
v1

=
Gm1 × (−R2)× (−1)×Gm2

∆

=

1

rs1 +R5
×R2 × 1

rs1 +R5

1 +
1

rs1 +R5
×R2 × 1

rs1 +R5
×R5

This is of the form
id2
v1
=

A

1 +Ab

where
A = Gm1 × (−R2)× (−1)×Gm2 =

1

rs1 +R5
×R2 × 1

rs2 +R3
= 2.5× 10−3 S

b = R5 = 1000Ω

Note that bA is dimensionless. Numerical evaluation yields

id2
v1
=

2.5× 10−3
1 + 1000× 2.5× 10−3 = 7.124× 10

−4 S

The resistance Rb is calculated with v1 = 0. It is given by

Rb =

µ
id2
vt

¶−1
=

µ
Gm2

∆

¶−1
= (1 + bA) (rs2 +R3) = 7 kΩ

Note that the feedback tends to increase Rb. The resistance RB is calculated as follows:

RB = (Rb −R3) kR3 = 857.1Ω
Because the gate current of M1 is zero, the input resistance is RA = R1 = 50 kΩ.
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Series-Series Example 2
A series-series feedback BJT amplifier is shown in Fig. 22. The input variable is the voltage v1 and the
output variable is the voltage v2. The feedback is from ie2 to the emitter of Q1. Because the feedback
does not connect to the input node, the input summing is series. The output sampling is series because the
feedback is proportional to the current that flows in series with the output rather than the output voltage.
Solve for the transconductance gain ic3/v1, the voltage gain v2/v1, the input resistance RA, and the output
resistance RB. Assume β = 100, IC1 = 0.6mA, IC2 = 1mA, IC3 = 4mA, α = β/ (1 + β), gm = IC/VT ,
re = αVT /IC , r0 = ∞, rx = 0, VT = 25mV, R1 = 100Ω, R2 = 9kΩ, R3 = 5kΩ, R4 = 600Ω, R5 = 640Ω,
and R6 = 100Ω. The circuit with feedback removed is shown in Fig. 23.

Figure 22: Amplifier circuit.

The circuit looking out of the emitter of Q1 is a Thévenin equivalent made with respect to the current
ie3. The output current is proportional to this current, i.e. ic3 = αie3. Because r0 =∞ for Q3, the feedback
does not affect the output resistance seen looking down through R4 because it is infinite. For a finite r0, a
test voltage source can be added in series with R4 to solve for this resistance. It would be found that a finite
r0 for Q3 considerably complicates the circuit equations and the flow graph.

Figure 23: Circuit with feedback removed.
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For the circuit with feedback removed, we can write

ve = v1 − ie3
R6R1

R6 +R5 +R1
ie1 = G1ve G1 =

1

re1 +R1k (R5 +R6)
ic1 = αie1

ib1 =
ic1
β

vtb2 = −ic1R2 ie2 = G2vtb2 G2 =
1

r0e2
r0e2 =

R2
1 + β

+ re

ic2 = αie2 vtb3 = −ic2R3 ie3 = G3vtb3 − k1ie1 G3 =
1

r0e3 +R6k (R1 +R5)

k1 =
R1

R1 +R5 + r0e3kR6
R6

R6 + r0e3
ic3 = αie3 v2 = −ic2R4

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 24. The determinant is

∆ = 1−
½
G1 × [(α×−R2 ×G2 × α×−R3 ×G3)− k1]× −R6R1

R6 +R5 +R1

¾
= 1 +G1 × (α×R2 ×G2 × α×Ra − k1)× R6R1

R6 +R5 +R1
= 251.5

Figure 24: Signal-flow graph for the circuit.

The transconductance gain is

ic3
v1

=
G1 × (α×−R2 ×G2 × α×−R3 ×G3 − k1)× α

∆

=
G1 × (α×R2 ×G2 × α×R3 ×G3 − k1)× α

1 + [G1 × (α×R2 ×G2 × α×Ra − k1)]× R6R1
R6 +R5 +R1

=
G1 × [(α×R2 ×G2 × α×R3 ×G3)− k1]× α

1 + [G1 × (α×R2 ×G2 × α×Ra − k1)× α]× R6R1
R6 +R5 +R1

× 1

α

This is of the form
ic3
v1
=

A

1 +Ab

where A and b are given by

A = G1 × [(α×R2 ×G2 × α×R3 ×G3)− k1]× α

=
1

re1 +R1k (R5 +R6)
×
· µ

α×R2 × 1

r0e2
× α×R3 × 1

r0e3 +R6k (R1 +R5)
× α

¶
− R1
R1 +R5 + r0e3kR6

R6
R6 + r0e3

¸
× α

= 20.83 S
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b =
R6R1

R6 +R5 +R1
× 1

α
= 12.02Ω

Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be
negative.
Numerical evaluation of the transconductance gain yields

ic3
v1
=

A

∆
= 0.083

The voltage gain is given by
v2
v1
=

ic3
v1
× v2

ic3
=

A

∆
×−R4 = −49.7

The resistances RA and RB are given by

RA =

µ
ib1
v1

¶−1
=

µ
G1α/β

∆

¶−1
=
∆× (1 + β)

G1
= ∆× (1 + β)× [re1 +R1k (R5 +R6)] = 3.285MΩ

RB = R4 = 600Ω

Series-Series Example 3
A series-series feedback BJT amplifier is shown in Fig. 25(a). The input variable is the voltage v1 and the
output variable is the voltage v2. The feedback is from ie2 to ic2 to the emitter of Q1. Because the feedback
does not connect to the input node, the input summing is series. Because the feedback does not sample
the output voltage, the sampling is series. That is, the feedback network samples the current in series with
the outpu. Solve for the transconductance gain ie2/v1, the voltage gain v2/v1, the input resistance RA, and
the output resistance RB. Assume β = 100, rπ = 2.5 kΩ, α = β/ (1 + β), re = α/gm, r0 = ∞, rx = 0,
VT = 25mV, R1 = 100Ω, R2 = 1kΩ, R3 = 20 kΩ, and R4 = 10 kΩ.

Figure 25: (a) Amplifier circuit. (b) Circuit with feedback removed.

The circuit with feedback removed is shown in Fig. 25(b). The circuit seen looking out of the emitter
of Q1 is replaced with a Thévenin equivalent circuit made with respect with ic2. The output current ie2 is
proportional to this current, i.e. ie2 = αic2. A test voltage source vt is added in series with the output to
solve for the output resistance. The resistance seen by the test source is labeled Rb.
For the circuit with feedback removed, we can write

ve = v1 − ic2R2 ie1 = G1ve G1 =
1

re +R1 +R2
ic1 = αie1 ib1 =

ic1
β
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vtb2 = −ic1R3 ie2 = G2 (vt − vtb2) G2 =
1

r0e2 +R4
r0e2 =

R3
1 + β

+ re ic2 = αie2

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 26. The determinant is

∆ = 1− (G1 × α×−R3 ×−G2 × α×−R2)
= 1 +G1 × α×R2 ×G2 × α×R2

= 1.181

Figure 26: Signal-flow graph for the equations.

The transconductance gain is

ie2
v1

=
G1 × α×−R3 ×−G2

∆

=
(G1 × α×R3 ×G2)

1 + (G1 × α×R3 ×G2)× α×R2

This is of the form
ie2
v1
=

A

1 +Ab

where A and b are given by

A = G1 × α×R3 ×G2

=
1

re1 +R1 +R2
× α×R3 × 1

r0e2 +R4
= 0.9117mS

b = αR2 = 1.98 kΩ

Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be
negative.
Numerical evaluation of the transconductance gain yields

ie2
v1
=

A

∆
= 0.325mS

The voltage gain is given by
v2
v1
=

ie2
v1
× v2

ie2
=

A

∆
×−R4 = −3.25

The resistances RA and RB are given by

RA =

µ
ib1
v1

¶−1
=

µ
G1α/β

∆

¶−1
= ∆× (1 + β) (re +R1 +R2) = 602 kΩ

Rb =

µ
ie2
vt

¶−1
=

µ
Gm2

∆

¶−1
= ∆× (R4 + r0e2) = 28.68 kΩ

RB = (Rb −R4) kR4 = 6.513 kΩ
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Series-Series Example 4
A series-series feedback BJT amplifier is shown in Fig. 27(a). The input variable is the voltage v1 and the
output variable is the current ic2. The feedback is from ic2 to ie2 to the gate of J1. The input summing is
series because the feedback does not connect to the same node that the source connects. The output sampling
is series because the feedback is proportional to the output current ic2. Solve for the transconductance gain
ic2/v1, the voltage gain v2/v1, the input resistance RA, and the output resistance RB. For J1, assume that
gm1 = 0.001 S, rs1 = g−1m1 = 1000Ω, and r01 =∞. For Q2, assume β2 = 100, rπ2 = 2.5 kΩ, α2 = β2/ (1 + β2),
re2 = α2/gm2, r02 = ∞, rx2 = 0, VT = 25mV. The resistor values are R1 = 1kΩ, R2 = 10 kΩ, R3 = 1kΩ,
R4 = 10 kΩ, R5 = 1kΩ, and R6 = 10 kΩ.

Figure 27: (a) Amplifier circuit. (b) Circuit with feedback removed.

The circuit with feedback removed is shown in Fig. 27(b). The circuit seen looking out of the emitter
of Q1 is replaced with a Thévenin equivalent circuit made with respect with ie2. The output current is
proportional to this current, i.e. ic2 = α2ie2. Because r02 = ∞, the feedback does not affect the output
resistance seen looking down through R6 because it is infinite. For a finite r02, a test voltage source can
be added in series with R6 to solve for this resistance. It would be found that a finite r02 considerably
complicates the circuit equations and the flow graph.
For the circuit with feedback removed, we can write

id1 = gm1ve ve = ie2
R5R3

R3 +R4 +R5
− v1 vtb2 = −id1R2 ie2 = G1vtb2

G1 =
1

r0e2 +R5k (R3 +R4)
r0e2 =

R2
1 + β2

+ re2 ic2 = α2ie2

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 28. The determinant is

∆ = 1−
µ
gm1 ×−R2 ×G1 × R5R3

R3 +R4 +R5

¶
= 1 + gm1 ×R2 ×G1 × R5R3

R3 +R4 +R5
= 1.801
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Figure 28: Signal-flow graph for the equations.

The transconductance gain is

ie2
v1

=
−1× gm1 ×−R2 ×G1 × α2

∆

=
gm1 ×R2 ×G1 × α2

1 + gm1 ×R2 ×G1 × R5R3
R3 +R4 +R5

=
(gm1 ×R2 ×G1 × α2)

1 + (gm1 ×R2 ×G1 × α2)× R5R3
R3 +R4 +R5

× 1

α2

This is of the form
ie2
v1
=

A

1 +Ab

where A and b are given by

A = gm1 ×R2 ×G1 × α2

= gm1 ×R2 × 1

r0e2 +R5k (R3 +R4)
× α2

= 9.516mS

b =
R5R3

R3 +R4 +R5
× 1

α2
= 84.17Ω

Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be
negative.
Numerical evaluation of the transconductance gain yields

ic2
v1
=

A

∆
= 5.284mS

The voltage gain is given by
v2
v1
=

ic2
v1
× v2

ic2
=

A

∆
×−R6 = −52.84

The resistances RA and RB are given by

RA = R1k
µ−id1

v1

¶−1
= R1k

³gm1
∆

´−1
= R1k

µ
∆

gm1

¶
= 643Ω

RB = R6 = 10 kΩ

Series-Series Example 5
A series-series feedback BJT amplifier is shown in Fig. 29. The input variable is the current i1 and the
output variable is the current ie2. The feedback path is the path from ie2 to ic2 to ie3 to ic3 to the emitter
of Q1. The input summing is series because the feedback does not connect to the input node. The output
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sampling is series because the feedback is proportional to the output current ie2 and not the output voltage
v2. Solve for the current gain gain ie2/i1, the transresistance gain v2/i1, the input resistance RA, and the
output resistance RB. Assume β = 100, rπ = 2.5 kΩ, gm = β/rπ, α = β/ (1 + β), re = α/gm, r0 = ∞,
rx = 0, VT = 25mV. The resistor values are R1 = 1kΩ, R2 = 100Ω, R3 = 10kΩ, R4 = 100Ω, R5 = 1kΩ,
and R6 = 10kΩ.

Figure 29: Amplifier circuit.

The circuit with feedback removed is shown in Fig. 30. The source is replaced with a Thevenin equivalent
circuit consisting of a voltage

v1 = i1R1

in series with the resistor R1. This is necessary for the feedback analysis to conform to convention for
series summing at the input. The circuit seen looking out of the emitter of Q1 is replaced with a Thévenin
equivalent circuit made with respect with ic3. The latter is proportional to the output current ie2. The
relation is

ic3
ie2

=
ic3
ie3

× ie3
ic2
× ic2

ie2
= α× R3

R3 +R4 + re3
× α

Note that re3 in this equation is the small-signal resistance seen looking into the emitter of Q3.

Figure 30: Circuit with feedback removed.
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For the circuit with feedback removed, we can write

ve = v1 − ic3R2 ie1 = G1ve G1 =
1

r0e1 +R2
r0e1 =

R1
1 + β

+ re ic1 = αie1 ib1 =
ic1
β

vtb2 = −ic1R6 ie2 = G2 (vt − vtb2) G2 =
1

r0e2 +R5
r0e2 =

R6
1 + β

+ re

ic2 = αie2 ie3 = ic2
R3

R3 +R4 + re
ic3 = αie3

Figure 31: Signal-flow graph for the equations.

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 31. The determinant is

∆ = 1−G1 × α×−R6 ×−G2 × α× R3
R3 +R4 + re

× α×R2

= 1 +G1 × α×R6 ×G2 × α× R3
R3 +R4 + re

× α×R2

= 7.335

The transconductance gain is

ie2
v1

=
1×G1 × α×−R6 ×−G2

∆

=
G1 × α×R6 ×G2

1 +G1 × α×R6 ×G2 × α× R3
R3 +R4 + re

× α×R2

This is of the form
ie2
v1
=

A

1 +Ab

where A and b are given by

A = G1 × α×R6 ×G2

=
1

r0e1 +R2
× α×R6 × 1

r0e2 +R5
= 65.43mS

b = α× R3
R3 +R4 + re

× α×R2 = 96.82Ω

Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be
negative.
Numerical evaluation of the transconductance gain yields

ie2
v1
=

A

∆
= 8.92mS
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The current gain is given by
ie2
i1
=

ie2
v1
× v1

i1
=

A

∆
×R1 = 8.92

The transresistance gain is

Rm =
v2
i1
=

ie2
i1
× v2

ie2
=

A

∆
×R1 ×−R5 = −8.92 kΩ

The resistances Ra and RA

Ra =

µ
ib1
v1

¶−1
=

µ
G1α/β

∆

¶−1
= ∆× [R1 + rπ + (1 + β)R2] = 113.3 kΩ

RA =
vb1
i1
= (Ra −R1) kR1 = 991.2Ω

The voltage gain is
v2
vb1

=
v2
i1
×
µ
vb1
i1

¶−1
=

µ
A

∆
×R1

¶
× 1

RA
= −990

The resistances Rb and RB are

Rb =

µ
ie2
vt

¶−1
=

µ
G2
∆

¶−1
= ∆× (r0e2 +R5) = 10.98 kΩ

RB = (Rb −R5) kR5 = 889.5Ω

Shunt-Series Example 1
Figure 32(a) shows the ac signal circuit of a shunt-series feedback amplifier. The input variable is v1 and
the output variable is id2. The input signal and the feedback signal are applied to the source of M1. A test
voltage source vt is added in series with the output to calculate the output resistance Rb. For the analysis
to follow convention, the input source consisting of v1 in series with R1 must be converted into a Norton
equivalent. This circuit is the current

i1 =
v1
R1

in parallel with the resistor R1. Fig. 32(b) shows the circuit with feedback removed and the source replaced
with the Norton equivalent. A test source vt is added in series with the output to calculate the resistance Rb.
The feedback at the source of M1 is modeled by a Norton equivalent circuit id2 in parallel with the resistor
R4. The feedback is from the output current id2 to the source of M1. The circuit values are gm = 0.001 S,
rs = g−1m = 1kΩ, r0 =∞, R1 = 10 kΩ, R2 = 20kΩ, R3 = 1kΩ, R4 = 1kΩ, and R5 = 1kΩ.
The following equations can be written for the circuit with feedback removed:

vs1 = iaRc ia = i1 + id2 Rc = R1kR4krs1 id1 = −gm1vs1
id2 = Gm2vb Gm2 =

1

rs2 +R3
vb = vt − vtg2 vtg2 = −id1R2

The current ia is the error current. The negative feedback tends to reduce ia, making |ia|→ 0 as the amount
of feedback becomes infinite. When this is the case, setting ia = 0 yields the current gain id2/i1 = −1.
Although the equations can be solved algebraically, the signal-flow graph simplifies the solution. Fig. 33

shows the flow graph for the equations. The determinant of the graph is given by

∆ = 1−Rc × (−gm1)× (−R2)× (−1)×Gm2 × 1
The current gain is calculated with vt = 0. It is given by

id2
i1

=
Rc × (−gm1)× (−R2)× (−1)×Gm2

∆

= −
R1kR4krs1 × gm1 ×R2 × 1

rs2 +R3

1 +Rc × gm1 ×R2 × 1

rs2 +R3
× 1
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Figure 32: (a) Amplifier circuit. (b) Circuit with feedback removed.

Figure 33: Flow graph for the equations.
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This is of the form
id2
i1
=

A

1 +Ab

where

A = Rc × (−gm1)× (−R2)× (−1)×Gm2 = − (R1kR4krs1)× gm1 ×R2 × 1

rs2 +R3
= −0.3333

b = −1
Note that Ab is dimensionless. Numerical evaluation yields

id2
i1
=

2.5× 10−3
1 + 1000× 2.5× 10−3 = −0.7692

The voltage gain is given by

v2
v1
=

id2
i1
× i1

v1
× v2

id2
=

id2
i1
× 1

R1
× (−R3) = 0.7692

The resistance Ra is calculated with vt = 0. It is given by

Ra =
vs1
i1
=

Rc

∆
=

R1kR4krs1
1 + 1×Rc × gm1 ×R2 × 1

rs2 +R3

= 76.92Ω

Note that the feedback tends to decrease Ra. The resistance RA is calculated as follows:

RA = R1 +
¡
R−1a −R−11

¢−1
= 1.083 kΩ

The resistance Rb is calculated with i1 = 0. It is given by

Rb =

µ
id2
vt

¶−1
=

µ
Gm2

∆

¶−1
= (1 +Ab) (rs2 +R3) = 8.667 kΩ

Note that the feedback tends to increase Rb. The resistance RB is calculated as follows:

RB = (Rb −R3) kR3 = 884.6Ω

Shunt-Series Example 2
A shunt-series feedback BJT amplifier is shown in Fig. 34(a). The input variable is the voltage v1 and the
output variable is the current ie2. The feedback is from ie2 to ic2 to the source of M1. The input summing
is shunt because the feedback connects to the same node that the source connects. The output sampling is
series because the feedback is proportional to the output current ie2. Solve for the voltage gain v2/v1, the
input resistance RA, and the output resistance RB. ForM1, assume that gm1 = 0.001 S, rs1 = g−1m1 = 1000Ω,
and r01 =∞. For Q2, assume β2 = 100, rπ2 = 2.5 kΩ, α2 = β2/ (1 + β2), re2 = α2/gm2, r02 =∞, rx2 = 0,
VT = 25mV. The resistor values are R1 = 10 kΩ, R2 = 100kΩ, R3 = 100 kΩ, R4 = 10kΩ, and R5 = 1kΩ.
The circuit with feedback removed is shown in Fig. 34(b). The source is replaced with a Norton equivalent
circuit. The current i1 is given by

i1 =
v1
R1

The circuit seen looking into R2 from the vs1 node is replaced with a Norton equivalent circuit made with
respect with ic2. The output current is proportional to this current, i.e. ic2 = α2ie2. A test voltage source
vt is added in series with ie2 to calculate the resistance Rb.
For the circuit with feedback removed, we can write

vs1 = iaRc ia = i1 − R4
R2 +R4

ic2 Rc = R1k (R2 +R4) krs1 id1 = gm1vs1 vtb2 = id1R3
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Figure 34: (a) Shunt-series amplifier. (b) Amplifier with feedback removed.

ie2 = G1vtb2 − vt
Rd

G1 =
1

r0e2 +R5
r0e2 =

R3
1 + β2

+ re2 Rd = R5 + r0e2 ic2 = α2ie2

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 35. The determinant is

∆ = 1−
µ
1×Rc × gm1 ×R3 ×G1 × α2 × −R4

R2 +R4

¶
= 1 +Rc × gm1 ×R3 ×G1 × α2 × R4

R2 +R4
= 5.025

Figure 35: Signal-flow graph for the equations.

The current gain is

ie2
i1

=
Rc × gm1 ×R3 ×G1

∆

=
Rc × gm1 ×R3 ×G1

1 +Rc × gm1 ×R3 ×G1 × α2 × R4
R2 +R4

=

µ
R1k (R2 +R4) krs1 × gm1 ×R3 × 1

r0e2 +R4

¶
1 +

µ
R1k (R2 +R4) krs1 × gm1 ×R3 × 1

r0e2 +R4

¶
× α2 × R4

R2 +R4
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This is of the form
ie2
i1
=

A

1 +Ab

where A and b are given by

A = Rc × gm1 ×R3 ×G1

= R1k (R2 +R4) krs1 × gm1 ×R3 × 1

r0e2 +R4
= 44.75

b = α2 × R4
R2 +R4

= 0.09

Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be
negative.
Numerical evaluation of the current gain yields

ie2
i1
=

A

∆
= 8.90

The resistances Ra and RA are

Ra =
vs1
i1
=

Rc

∆
= 179.3Ω

RA = R1 +
¡
R−1a −R−11

¢−1
= 10.13 kΩ

The resistance Rb and RB are

Rb =

µ−ie2
vt

¶−1
=

µ
1

∆

1

Rd

¶−1
= ∆Rd = 10.12 kΩ

RB = (Rb −R5) kR5 = 901.3Ω
The voltage gain is given by

v2
v1
=

ie2
i1
× v2

ie2
× i1

v1
=

A

∆
×R2 × 1

R1
= 89.0

Shunt-Series Example 3
A shunt-series feedback BJT amplifier is shown in Fig. 36(a). The input variable is the voltage v1 and
the output variable is the current ic2. The feedback is from ic2 to ie2 to ic3 to the emitter of Q1. The
input summing is shunt because the feedback connects to the same node that the source connects. The
output sampling is series because the feedback is proportional to the output current ic2. Solve for the
voltage gain v2/v1, the input resistance RA, and the output resistance RB. Assume β = 100, rπ = 2.5 kΩ,
α = β/ (1 + β), re = α/gm, r0 = ∞, rx = 0, VT = 25mV. The resistor values are R1 = R3 = 1kΩ and
R2 = R4 = R5 = 10 kΩ.
The circuit with feedback removed is shown in Fig. 36(b). The source is replaced with a Norton equivalent

circuit consisting of the current
i1 =

v1
R1

in parallel with the resistor R1. The feedback is modeled by a Norton equivalent circuit consisting of the
current ic3. Because r03 = ∞, the output resistance of this source is an open circuit. The output current
is proportional to this current. Because r02 = ∞, the feedback does not affect the output resistance seen
looking down through R5 because it is infinite. For a finite r02, a test voltage source can be added in series
with R5 to solve for this resistance. It would be found that a finite r02 considerably complicates the circuit
equations and the flow graph.
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Figure 36: (a) Amplifier circuit. (b) Circuit with feedback removed.

For the circuit with feedback removed, we can write

ia = i1 − ic3 ve1 = iaRb Rb = R1kR2kre1 ic1 = −gm1ve1 ic2 = −β2ic1 ie2 =
ie2
α2

vtb3 = ie2R4 ie3 = G1vtb3 G1 =
1

r0e3 +R3
r0e3 =

R4
1 + β3

+ re3 ic3 = α3ie3

The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown
in Fig. 37. The determinant is

∆ = 1−
µ
Rb ×−gm1 ×−β1 ×

1

α2
×R4 ×G1 × α3 ×−1

¶
= 1 +Rb × gm1 × β1 ×

1

α2
×R4 ×G1 × α3

= 858.7

Figure 37: Signal-flow graph for the equations.
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The transconductance gain is

ic2
i1

=
1×Rb ×−gm1 ×−β2

∆

=
Rb × gm1 × β2

1 +Rb × gm1 × β2 ×
1

α2
×R4 ×G1 × α3

=
(Rb × gm1 × β2)

1 + (Rb × gm1 × β2)×
µ
1

α2
×R4 ×G1 × α3

¶
This is of the form

ic2
i1
=

A

1 +Ab

where A and b are given by

A = Rb × gm1 × β2
= R1kR2kre1 × gm1 × β2
= 96.39

b =
1

α2
×R4 ×G1 × α3 =

1

α2
×R4 × 1

r0e3 +R3
× α3 = 8.899

Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be
negative.
Numerical evaluation of the transconductance gain yields

ic2
i1
=

A

∆
= 0.112

The voltage gain is given by

v2
v1
=

i1
v1
× ic2

i1
× v2

ic2
=

1

R1
× A

∆
×−R5 = −1.122

The resistances Ra, RA, and RB are given by

Ra =
Rb

∆
= 0.028Ω RA = R1 +

¡
R−1a −R−11

¢−1
= 1kΩ RB = R5 = 10kΩ

Shunt-Series Example 4
Figure 38(a) shows the ac signal circuit of a shunt-series feedback amplifier. The input variable is v1 and
the output variable is id2. The input signal and the feedback signal are applied to the gate of M1. For the
analysis to follow convention, the input source consisting of v1 in series with R1 must be converted into a
Norton equivalent. The feedback is from the output current id2 to the source of M2 and to the gate of M1.
The circuit values are gm = 0.001 S, rs = g−1m = 1kΩ, r0 = ∞, R1 = 1kΩ, R2 = 100kΩ, R3 = 10kΩ,
R4 = 1kΩ, R5 = 1kΩ, and R6 = 100Ω.
The circuit with feedback removed is shown in Fig. 38(b). The source is replaced with a Norton equivalent

circuit consisting of the current
i1 =

v1
R1

in parallel with the resistor R1. The feedback is modeled by a Norton equivalent circuit consisting of the
current k1id2. The output current is proportional to this current. Because r02 =∞, the feedback does not
affect the output resistance seen looking up from signal ground into the lower terminal of R3 because it is
infinite. For a finite r02, a test voltage source can be added in series with R3 to solve for this resistance. It
would be found that a finite r02 considerably complicates the circuit equations and the flow graph.
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Figure 38: (a) Amplifier circuit. (b) Circuit with feedback removed.

The following equations can be written for the circuit with feedback removed:

ia = i1 + k1id2 k1 =
R5

R5 +R6
vg1 = iaRc Rc = R1kRb Rb = R5 +R6

id1 = gm1vg1 id2 = G1 (vtg2 − vts2) vtg2 = −id1R2 vts2 = k2vg1

k2 =
R5

R5 +R6
G1 =

1

rs2 +Rts2
Rts2 = R4 +R5kR6

The current ia is the error current. The negative feedback tends to reduce ia, making |ia|→ 0 as the amount
of feedback becomes infinite. When this is the case, setting ia = 0 yields the current gain id2/i1 = −1/k1.
Although the equations can be solved algebraically, the signal-flow graph simplifies the solution. Fig. 39

shows the flow graph for the equations. The determinant of the graph is given by

∆ = 1− (Rc × gm1 ×−R2 ×G1 × k1)

= 1 +Rc × gm1 ×R2 ×G1 × k1

Figure 39: Signal-flow graph for the equations.

The current gain is given by

id2
i1

=
Rc × gm1 ×−R2 ×G1

∆

=

−
µ
Rc × gm1 ×R2 × 1

rs2 +R4 +R5kR6

¶
1 +

·
−
µ
Rc × gm1 ×R2 × 1

rs2 +R4 +R5kR6

¶¸
× (−k1)

This is of the form
id2
i1
=

A

1 +Ab
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where

A = −
µ
Rc × gm1 ×R2 × 1

rs2 +R4 +R5kR6

¶
= −25.02

b = −k1 = −0.909
Note that Ab is dimensionless. Numerical evaluation yields

id2
i1
=

−25.02
1 + (−25.02)× (−0.909) = −1.054

The voltage gain is given by

v2
v1
=

id2
i1
× i1

v1
× v2

id2
=

id2
i1
× 1

R1
×−R3 = −10.54

The resistance Ra is

Ra =
vs1
i1
=

Rc

∆
=

R1k (R5 +R6)

∆
= 22.03Ω

Note that the feedback tends to decrease Ra. The resistance RA is

RA = R1 +
¡
R−1a −R−11

¢−1
= 1.023 kΩ

The resistance RB is
RB = R3 = 10 kΩ

This is not a function of the feedback because r02 has been assumed to be infinite.

Shunt-Series Example 5
Figure 40(a) shows the ac signal circuit of a shunt-series feedback amplifier. The input variable is v1 and
the output variable is id2. The input signal and the feedback signal are applied to the base Q1. For the
analysis to follow convention, the input source consisting of v1 in series with R1 must be converted into a
Norton equivalent. The feedback is from the output current ic2 to the current ie2 to the current ie3 to the
current ic3. The resistor values are R1 = 1kΩ, R2 = 10kΩ, R3 = 10kΩ, and R4 = 10 kΩ. Assume β = 100,
rπ = 2.5 kΩ, α = β/ (1 + β), re = α/gm, r0 =∞, rx = 0, VT = 25mV.

Figure 40: (a) Amplifier circuit. (b) Circuit with the the source replaced with a Norton equivalent.

The circuit with feedback removed is shown in Fig. 40(b). The source is replaced with a Norton equivalent
circuit consisting of the current

i1 =
v1
R1

in parallel with the resistor R1. The feedback is modeled by a Norton equivalent circuit consisting of the
current ic3. The output current is proportional to this current. Because r02 = ∞, the feedback does not
affect the output resistance seen looking up from signal ground into the lower terminal of R4 because it is
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infinite. For a finite r02, a test voltage source can be added in series with R4 to solve for this resistance. It
would be found that a finite r02 considerably complicates the circuit equations and the flow graph.
The following equations can be written for the circuit with feedback removed:

ia = i1 + ic3 vb1 = iaRb Rb = R1krπ1 ic1 = gm1vb1 vtb2 = −ic1R3 ie2 = G1vtb2

G1 =
1

r0e2 +R2 + re3
r0e2 =

R3
1 + β2

+ re2 ic2 = α2ie2 ie3 = ie2 ic3 = α3ie3

The current ia is the error current. The negative feedback tends to reduce ia, making |ia|→ 0 as the amount
of feedback becomes infinite. When this is the case, setting ia = 0 yields the current gain id2/i1 = −1/k1.
Although the equations can be solved algebraically, the signal-flow graph simplifies the solution. Fig. 41

shows the flow graph for the equations. The determinant of the graph is given by

∆ = 1− (Rb × gm1 ×−R3 ×G1 × 1× α3 × 1)
= 1 +Rb × gm1 ×R3 ×G1 × α3

= 28.88

Figure 41: Signal-flow graph for the equations.

The current gain is given by

id2
i1

=
1×Rb × gm1 ×−R3 ×G1 × α2

∆

=
− (Rb × gm1 ×R3 ×G1 × α2)

1 + [− (Rb × gm1 ×R3 ×G1 × α2)]×
µ
−α3
α2

¶
This is of the form

id2
i1
=

A

1 +Ab

where
A = − (Rb × gm1 ×R3 ×G1 × α2) = −27.88

b = −α3
α2
= −1

Note that Ab is dimensionless and the product is positive. The latter is a result of the feedback being
negative. Numerical evaluation yields

id2
i1
=

−27.88
1 + (−27.88)× (−1) = −0.965

The voltage gain is given by

v2
v1
=

id2
i1
× i1

v1
× v2

id2
=

id2
i1
× 1

R1
×−R4 = 9.654

The resistance Ra is

Ra =
vs1
i1
=

Rb

∆
=

R1krπ1
∆

= 24.74Ω
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Note that the feedback tends to decrease Ra. The resistance RA is

RA = R1 +
¡
R−1a −R−11

¢−1
= 1.025 kΩ

The resistance RB is
RB = R4 = 10 kΩ

This is not a function of the feedback because r02 has been assumed to be infinite.
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