© Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

Common-Drain Amplifier Example

$\mathrm{K}_{\text {prime }}:=0.002 \quad \mathrm{~W}:=1$
$\mathrm{L}:=1 \quad \mathrm{~V}_{\mathrm{TO}}:=1.75$
$\lambda:=0.016$
$\mathrm{V}_{\text {plus }}:=24$
$\mathrm{V}_{\text {minus }}:=-24$
$R_{1}:=5 \cdot 10^{6}$
$\mathrm{R}_{2}:=1 \cdot 10^{6}$
$\mathrm{R}_{\mathrm{S}}:=3 \cdot 10^{3}$
$R_{L}:=20 \cdot 10^{3}$
$\mathrm{R}_{\mathrm{S}}:=5 \cdot 10^{3}$
$R_{p}(x, y):=\frac{x \cdot y}{x+y}$

DC Bias Solution

$\mathrm{V}_{\mathrm{GG}}:=\frac{\mathrm{V}_{\text {plus }} \cdot \mathrm{R}_{2}+\mathrm{V}_{\text {minus }} \cdot \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{~V}_{\mathrm{GG}}=-16 \quad \quad \mathrm{~V}_{\mathrm{SS}}:=\mathrm{V}_{\text {minus }} \quad \mathrm{R}_{\mathrm{SS}}:=\mathrm{R}_{\mathrm{S}}$
$\mathrm{v}_{1}:=\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{TO}} \quad \mathrm{V}_{1}=6.25$
We neglect the Early effect, i.e. set $\lambda=0$ to solve for the drain bias current.
$\mathrm{K}:=\mathrm{K}_{\text {prime }} \cdot \frac{\mathrm{W}}{\mathrm{L}}$
$\mathrm{I}_{\mathrm{D}}:=\frac{1}{2 \cdot \mathrm{~K} \cdot \mathrm{R}_{\mathrm{S}}{ }^{2}} \cdot\left(\sqrt{1+2 \cdot \mathrm{~K} \cdot \mathrm{~V}_{1} \cdot \mathrm{R}_{\mathrm{S}}}-1\right)^{2} \quad \mathrm{I}_{\mathrm{D}}=1.655 \cdot 10^{-3}$
$\mathrm{V}_{\mathrm{D}}:=\mathrm{V}_{\text {plus }} \quad \mathrm{V}_{\mathrm{D}}=24 \quad \mathrm{~V}_{\mathrm{S}}:=\mathrm{V}_{\text {minus }}+\mathrm{I}_{\mathrm{D}} \cdot \mathrm{R}_{\mathrm{S}} \quad \mathrm{V}_{\mathrm{S}}=-19.036$
$\mathrm{V}_{\mathrm{DS}}:=\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{S}} \quad \mathrm{V}_{\mathrm{DS}}=43.036$
$\mathrm{v}_{\mathrm{GS}}:=\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{S}} \quad \mathrm{V}_{\mathrm{GS}}=3.036 \quad \mathrm{v}_{\mathrm{GS}}-\mathrm{v}_{\mathrm{TO}}=1.286$

Because $\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TO}}$, the MOSFET is in the active or saturated state.
Here is an exact solution for the drain current. Note that MathCad requires numbers for everything except the variable being solved for. The drain-source voltage in the equation is $48-\mathrm{I}_{\mathrm{D}} \cdot 13 \cdot 10^{3}$

$$
\mathrm{I}_{\mathrm{D}}=\frac{1}{4 \cdot 10^{-3} \cdot\left[1+0.016 \cdot\left(48-\mathrm{I}_{\mathrm{D}} \cdot 3 \cdot 10^{3}\right)\right] \cdot 3000^{2}} \cdot\left[\sqrt{\left.1+4 \cdot 10^{-3} \cdot\left[1+\left[0.016 \cdot\left(48-\mathrm{I}_{\mathrm{D}} \cdot 3 \cdot 10^{3}\right)\right]\right] \cdot 6.25 \cdot 3000-1\right]^{2}}\right.
$$

.0017441295129196544703 This is the exact solution for I_{D} including the Early effect. We will use the approximate solution for the ac analysis below.
$\frac{{ }_{\mathrm{D}} \mathrm{D}^{-.0017441295129196544703}}{.0017441295129196544703} \cdot 100=-5.135$
This is the percentage error in neglecting the Early effect in solving for the drain current.

Now for the ac solution.

$\mathrm{K}:=\mathrm{K}_{\text {prime }} \cdot \frac{\mathrm{W}}{\mathrm{L}} \cdot\left(1+\lambda \cdot \mathrm{V}_{\mathrm{DS}}\right) \quad \mathrm{K}=3.377 \cdot 10^{-3} \quad \mathrm{~g}_{\mathrm{m}}:=\sqrt{2 \cdot \mathrm{~K} \cdot \mathrm{I} \mathrm{D}} \quad \mathrm{g}_{\mathrm{m}}=3.343 \cdot 10^{-3}$
$r_{s}:=\frac{1}{g_{m}}$
$\mathrm{r}_{\mathrm{S}}=299.135$
$r_{0}:=\frac{\lambda^{-1}+V_{D S}}{I_{D}}$

$$
r_{0}=6.378 \cdot 10^{4}
$$

$\mathrm{v}_{\mathrm{s}}:=1 \quad$ This makes the gain equal to v_{o}.
$v_{t g}:=v_{s} \cdot \frac{R_{p}\left(R_{1}, R_{2}\right)}{\left.R_{s}+R_{p} R_{1}, R_{2}\right)} \quad v_{t g}=0.994$
$R_{t g}:=R_{p}\left(R_{s}, R_{p}\left(R_{1}, R_{2}\right)\right) \quad R_{t g}=4.97 \cdot 10^{3}$

Model r_{0} as an external resistor connected from source to ground. Thus the r_{0} approximations do not need to be used.

$v_{o}:=v_{t g} \cdot \frac{R_{p}\left(r_{0}, R_{p}\left(R_{S}, R_{L}\right)\right)}{\left.r_{s}+R_{p} r_{0}, R_{p}\left(R_{S}, R_{L}\right)\right)}$
$\mathrm{v}_{\mathrm{o}}=0.888$
This is the voltage gain.
$\mathrm{r}_{\text {out }}:=\mathrm{R}_{\mathrm{p}}\left(\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{p}}\left(\mathrm{r}_{\mathrm{s}}, \mathrm{r}_{0}\right)\right)$
$r_{\text {out }}=270.857$
$r_{\text {in }}:=R_{p}\left(R_{1}, R_{2}\right)$
$r_{\text {in }}=8.333 \cdot 10^{5}$

